Найти обратную матрицу двумя способами с помощью присоединенной

Обратная матрица с помощью алгебраических дополнений

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью алгебраических дополнений.

Обратной матрицей называется матрицы A -1 при умножении на исходную матрицу A получается единичная матрица E.

Алгоритм нахождения обратной матрицы с помощью алгебраических дополнений:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Найти матрицу миноров M.
  3. Из матрицы M найти матрицу алгебраических дополнений C * .
  4. Транспонировать матрицу (поменяем местами строки со столбцами) C * , получить матрицу C *T .
  5. По формуле найти обратную матрицу.

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Найдем минор M11 и алгебраическое дополнение A11. В матрице А вычеркиваем строку 1 и столбец 1.

Найдем минор M12 и алгебраическое дополнение A12. В матрице А вычеркиваем строку 1 и столбец 2.

Остальные миноры и алгебраические дополнения находятся аналогично. В итоге получаем матрицу C * .

Найдем транспонированную союзную матрицу алгебраических дополнений C *T .

Источник

Обратная матрица с помощью элементарных преобразований

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью элементарных преобразований.

Обратной матрицей называется матрицы A -1 при умножении на исходную матрицу A получается единичная матрица E.

Алгоритм нахождения обратной матрицы с помощью элементарных преобразований:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Дописываем справа единичную матрицу
  3. Делаем прямой ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей под ее главной диагонали.
  4. Делаем обратный ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей над ее главной диагонали.
  5. Элементы главной диагонали левой матрицы, преобразуем в единицы.

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Допишем к нашей матрице слева единичную матрицу.

Чтобы сделать нули под элементом a11, вычтем 1-ую строку из всех строк, что расположены ниже её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a11.

Чтобы сделать нули над элементом a33, вычтем 3-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a33.

Чтобы сделать нули над элементом a22, вычтем 2-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a22.

Поделим каждую строку на элемент, который стоит на главной диагонали.

Источник

Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы.

Матрица $A^<-1>$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^<-1>\cdot A=A\cdot A^<-1>=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Читайте также:  Планирование деятельности способ управления

Обратная матрица $A^<-1>$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^<-1>$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части.

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_$. Для того, чтобы найти обратную матрицу $A^<-1>$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $\Delta A\neq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_$ каждого элемента матрицы $A$ и записать матрицу $A_^<*>=\left(A_ \right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^<-1>=\frac<1><\Delta A>\cdot >^T$.

Матрицу $>^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (пример №2), третьего (пример №3), четвертого (пример №4). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части.

Найти матрицу, обратную к матрице $A=\left( \begin 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & -1 & -9 & 0 \end \right)$.

Так как все элементы четвёртого столбца равны нулю, то $\Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $\Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Ответ: матрицы $A^<-1>$ не существует.

Найти матрицу, обратную к матрице $A=\left(\begin -5 & 7 \\ 9 & 8 \end\right)$. Выполнить проверку.

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$ \Delta A=\left| \begin -5 & 7\\ 9 & 8 \end\right|=-5\cdot 8-7\cdot 9=-103. $$

Так как $\Delta A \neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

Составляем матрицу из алгебраических дополнений: $A^<*>=\left( \begin 8 & -9\\ -7 & -5 \end\right)$.

Транспонируем полученную матрицу: $>^T=\left( \begin 8 & -7\\ -9 & -5 \end\right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$). Используя формулу $A^<-1>=\frac<1><\Delta A>\cdot >^T$, имеем:

$$ A^<-1>=\frac<1><-103>\cdot \left( \begin 8 & -7\\ -9 & -5 \end\right) =\left( \begin -8/103 & 7/103\\ 9/103 & 5/103 \end\right) $$

Итак, обратная матрица найдена:

$$A^<-1>=\left( \begin -8/103 & 7/103\\ 9/103 & 5/103 \end\right).$$

Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^<-1>\cdot A=E$ или $A\cdot A^<-1>=E$. Проверим выполнение равенства $A^<-1>\cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^<-1>$ не в форме $\left( \begin -8/103 & 7/103\\ 9/103 & 5/103 \end\right)$, а в виде $-\frac<1><103>\cdot \left( \begin 8 & -7\\ -9 & -5 \end\right)$:

Проверка пройдена успешно, обратная матрица $A^<-1>$ найдена верно.

Ответ: $A^<-1>=\left( \begin -8/103 & 7/103\\ 9/103 & 5/103 \end\right)$.

Найти обратную матрицу для матрицы $A=\left( \begin 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end \right)$. Выполнить проверку.

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$ \Delta A=\left| \begin 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end \right| = 18-36+56-12=26. $$

Так как $\Delta A\neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

Составляем матрицу из алгебраических дополнений и транспонируем её:

Используя формулу $A^<-1>=\frac<1><\Delta A>\cdot >^T$, получим:

$$ A^<-1>=\frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right)= \left( \begin 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end \right) $$

Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^<-1>\cdot A=E$ или $A\cdot A^<-1>=E$. Проверим выполнение равенства $A\cdot A^<-1>=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^<-1>$ не в форме $\left( \begin 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end \right)$, а в виде $\frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right)$:

$$ A\cdot> =\left( \begin 1 & 7 & 3 \\ -4 & 9 & 4\\ 0 & 3 & 2\end \right)\cdot \frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right) =\frac<1><26>\cdot\left( \begin 26 & 0 & 0 \\ 0 & 26 & 0 \\ 0 & 0 & 26\end \right) =\left( \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end \right) =E $$

Проверка пройдена успешно, обратная матрица $A^<-1>$ найдена верно.

Ответ: $A^<-1>=\left( \begin 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end \right)$.

Найти матрицу, обратную матрице $A=\left( \begin 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end \right)$.

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу). Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

Определитель матрицы $A$ вычислим по следующей формуле:

А далее продолжаем находить алгебраические дополнения:

Матрица из алгебраических дополнений:

$$A^*=\left(\begin 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end\right)$$

$$^T=\left(\begin 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end\right)$$

$$ A^<-1>=\frac<1><100>\cdot \left( \begin 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end \right)= \left( \begin 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end \right) $$

Проверка, при желании, может быть произведена так же, как и в предыдущих примерах.

Ответ: $A^<-1>=\left( \begin 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end \right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Источник

Как найти обратную матрицу?

Для любой невырожденной матрицы А существует и притом единственная матрица A -1 такая, что

где E — единичная матрица тех же порядков, что и А. Матрица A -1 называется обратной к матрице A.

Если кто-то забыл, в единичной матрице, кроме диагонали, заполненной единицами, все остальные позиции заполнены нулями, пример единичной матрицы:

Нахождение обратной матрицы методом присоединённой матрицы

Обратная матрица определяется формулой:

Т.е. для вычисления обратной матрицы, нужно вычислить определитель этой матрицы. Затем найти алгебраические дополнения для всех её элементов и составить из них новую матрицу. Далее нужно транспортировать эту матрицу. И каждый элемент новой матрицы поделить на определитель исходной матрицы.

Рассмотрим несколько примеров.

Найти A -1 для матрицы

Р е ш е н и е. Найдём A -1 методом присоединённой матрицы. Имеем det A = 2. Найдём алгебраические дополнения элементов матрицы A. В данном случае алгебраическими дополнениями элементов матрицы будут соответствующие элементы самой матрицы, взятые со знаком в соответствии с формулой

Имеем A11 = 3, A12 = -4, A21 = -1, A22 = 2. Образуем присоединённую матрицу

Транспортируем матрицу A*:

Находим обратную матрицу по формуле:

Методом присоединённой матрицы найти A -1 , если

Р е ш е н и е. Прежде всего вычисляем определитесь данной матрицы, чтобы убедиться в существовании обратной матрицы. Имеем

Здесь мы прибавили к элементам второй строки элементы третьей строки, умноженные предварительно на (-1), а затем раскрыли определитель по второй строке. Так как определитесь данной матрицы отличен от нуля, то обратная к ней матрица существует. Для построения присоединённой матрицы находим алгебраические дополнения элементов данной матрицы. Имеем

В соответствии с формулой

транспортируем матрицу A*:

Тогда по формуле

Нахождение обратной матрицы методом элементарных преобразований

Кроме метода нахождения обратной матрицы, вытекающего из формулы (метод присоединенной матрицы), существует метод нахождения обратной матрицы, называемый методом элементарных преобразований.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для нахождения матрицы A -1 построим прямоугольную матрицу В = (А|Е) порядков (n; 2n), приписывая к матрице А справа единичную матрицу Е через разделительную черту:

Далее, с помощью элементарных преобразований над строками, приводим матрицу В к виду (Е|А-1), что всегда возможно, если матрица А невырождена.

Методом элементарных преобразований найти A -1 , если

Р е ш е н и е. Образуем матрицу B:

Обозначим строки матрицы B через α1, α2, α3. Произведём над строками матрицы B следующие преобразования:

В результате последнего получаем

Нахождение обратных матриц в wxMaxima и Maxima

Для нахождения обратных матриц в wxMaxima и Maxima используется функция invert:

Эта функция равнозначна возведению матрицы в степень -1 (M^^-1).

Ещё одна функция в wxMaxima и Maxima для нахождения обратных матриц — invert_by_adjoint. Она находит обратную матрицу методом присоединения.

Также можно упомянуть функцию invert_by_lu, которая находит обратную матрицу используя LU-факторизацию.

Источник

Читайте также:  Понятие множество элемент множества способы задания множеств
Оцените статью
Разные способы