Найти натуральную величину треугольника способом перемены плоскостей

Определить натуральную величину треугольника

— можно по ортогональной проекции, относительно которой, плоскость треугольника параллельна.

Замена плоскостей проекций

Построение натуральной величины треугольника методом замены плоскостей — в общем случае, исходные плоскости П12 переведены в П54, так что плоскость исходного треугольника параллельна П5, а собственно треугольник проецируется в равный себе, так как каждый отрезок (сторона) треугольника параллельна плоскости проекций.

  1. На горизонтальной проекции, в треугольнике ABC проведена фронталь f=AF (A1F1║OX).
  2. Фронтальная проекция f2 определена по проекционной связи F1F2 с условием F2∈B2C2.
  3. Замена П1 на П4⊥f — в результате ABC занимает положение проецирующее на П4. A4B4C4 — проецируется в один отрезок, и угол φ соответствует углу наклона плоскости треугольника ABC к фронтальной плоскости проекций П2.
  4. П5║ABC заменяет П2. A5B5C5=ABC — натуральная величина заданного треугольника.

Начальный выбор фронтали произволен, и возможно выбрать для решения задачи любую линию частного положения лежащую в плоскости треугольника: фронталь, горизонталь или профильную прямую.

Плоскопараллельное перемещение

Используюя способ плоскопараллельного перемещения, выполняется преобразование исходных проекций до положения треугольника параллельно одной из исходных плоскостей проекций.

  1. Плоско-параллельное перемещение до положения f⊥П1
    ∠γ — наклон плоскости треугольника к фронтальной плоскости проекции.
  2. Приведение вращением вокруг фронтально проецирующей оси до ABC║П2

R на первом этапе показывает эквивалентность плоскопараллельного перемещения и метода вращения.

Способ вращения вокруг фронтали

  1. В плоскости треугольника выбрана горизонталь f=AF
  2. Методом прямоугольного треугольника определён радиус R вращения точки C вокруг f.
  3. |R|=|fC|=|f2C 0
    2 | — максимальное удаление точки C от оси вращения, при котором плоскость треугольника занимает положение параллельное фронтальной плоскости проекций.
  4. B 0
    2 определена как пересечение F2C 0
    2 с перпендикуляром к фронтальной проекции оси вращения f2

Аналогично, можно решить задачу определения натуральной величины треугольника вращением вокруг горизонтали или совмещением плоскости фигуры с горизонтальной плоскостью проекции вращением вкруг горизонтального следа плоскости.

Источник

Построить натуральную величину треугольника авс

Определить натуральную величину треугольника авс — можно тремя основными способами: (1) заменой плоскостей проекций, (2) методом прямоугольного треугольника и (3) вращением вокруг проецирующей оси или плоскопараллельным перемещением. Цель преобразования чертежа — построить проекцию треугольника АВС соответствующую натуральной величине.

В примерах, в качестве опорной прямой использована фронталь треугольника. Все алгоритмы могут использовать любую прямую частного положения. Для понимания использования фронтали, поверните чертёж на 180°.

Способ замены плоскостей проекций

Найти натуральную величину треугольника заменой плоскостей можно за два этапа: (1) перевести известную линию треугольника в проецирующее положение и (2) построить проекцию, плоскость которой параллельна плоскости треугольника, при которой плоская фигура проецируется в натуральную величину. Для первой замены, в плоскости общего положения следует выбрать фронталь или горизонталь.

В плоскости треугольника АВС проведена фронталь f. Перпендикулярно фронтали построена плоскость проекций П5, которая заменяет П1. На П5 треугольник АВС проецируется в отрезок. Вторая замена проекции выполнена параллельно АВС A6B6C6=АВС .

Метод плоскопараллельного перемещения

Определить натуральную величину треугольника способом плоскопараллельного перемещения можно за два этапа: первое перемещение переводит треугольник АВС в проецирующее положение, второе — совмещает с плоскостью параллельной плоскости проекций.

Произвольным плоскопараллельным перемещением выполнено преобразование положения треугольника АВС до горизонтально проецирующего положения f⊥П1. Аналогично методу замены плоскостей, первое перемещение преобразует горизонтальную проекцию треугольника в отрезок прямой. Второе перемещение выполнено до положения АВС параллельно фронтальной плоскости.

Читайте также:  Способы организации производства общественных благ

Метод прямоугольного треугольника

При вращении треугольника вокруг f, вершины перемещаются по окружностям во фронтально проецирующих плоскостях. Фронтальные проекции траектории вращения вершин АВС представлены перпендикулярами к f. Радиус вращения одной из вершин построен способом прямоугольного треугольника. B 0
2 — положение вершины треугольника в плоскости параллельной фронтальной проекции и проходящей через ось вращения f.

Источник

Чертежик

Метки

Натуральная величина треугольника с описанием.

Натуральная величина треугольника определяется 2 методами:

  1. замена плоскостей проекции;
  2. плоскопараллельное перемещение.

Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».

Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.

Алгоритм определения натуральной величины плоскости:

Замена плоскостей проекции

1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.

2.) Строится дополнительная горизонтальная линия 1 1 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.

3.) Построив прямую на нижнем рисунке, чертится под углом 90 0 ось Х 1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:

  • от С2 до оси Х;
  • от В2 до оси Х;
  • от А0 до оси Х.

Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.

4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В 4 С 4 А 4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.

5.) Отмеряются расстояния:

  • от В1 до Х1;
  • от С1 до Х1;
  • от А1 до Х1.

Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).

6.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»

Плоскопараллельное перемещение

7.) Откладывается отрезок на оси Х (обозначен синим цветом).

8.) Переносятся точки на текущее построение.

9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. 10.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).11.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. 12.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:

Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).

13.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″14.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.15.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Пример чертежа на тему «Натуральная величина треугольника» смотрите здесь.

Источник

Лекция 4. Способы преобразования ортогонального чертежа

4.1. Способ перемены плоскостей проекций

Чаще всего геометрические объекты расположены относительно плоскостей проекций в общем положении, и при решении задач для достижения поставленной цели необходимо выполнять много построений.

Количество построений можно значительно сократить, если геометрические элементы будут расположены в частном положении относительно плоскостей проекций.

Существуют два основных способа преобразования чертежа, при которых:

  1. Объект остаётся неподвижным, при этом меняется аппарат проецирования;
  2. Условия проецирования не меняются, но изменяется положение объекта в пространстве.
Читайте также:  Рассчитать амортизацию линейным способом с ндс

К первому способу относится способ перемены плоскостей проекций.

Ко второму – способ вращения (вращение вокруг линии уровня и вращение вокруг проецирующей прямой); способ плоскопараллельного перемещения.

Рассмотрим наиболее часто используемые способы при решении задач.

Способ перемены плоскостей проекций или способ введения дополнительных плоскостей проекций (ДПП) позволяет перейти от заданной системы плоскостей проекций к новой системе, более удобной для решения той или иной задачи.

Рассмотрим положение точки А относительно известной системы плоскостей проекций π2⊥π1 (Рисунок 4.1, а и б).

Введём π4⊥π1, при этом получим новую систему двух взаимно перпендикулярных плоскостей. Положение точки А на эпюре будет в этом случае задано проекциями А1 и А4.

Правила перемены плоскостей проекций:

  1. Новая плоскость проекций вводится перпендикулярно, по крайней мере, одной из заданных на чертеже плоскостей проекций;
  2. ДПП располагается относительно проецируемого объекта в частном положении, удобном для решения поставленной задачи;
  3. Новую плоскость совмещаем вращением вокруг новой оси проекций с плоскостью, которой она перпендикулярна на свободное место так, чтобы проекции не накладывались друг на друга.


а б

Рисунок 4.1 – Способ перемены плоскостей проекций

  1. На чертеже новая проекция геометрического элемента находится на линии связи, перпендикулярной новой оси проекций:
  1. Расстояние от А4 до π14 равно расстоянию от А2 до π21, так как величина этих отрезков (отмечены ○) определяет расстояние от точки А до плоскости проекций π1.

При решении задачи необходимо заранее обдумать, как расположить новую плоскость проекций относительно заданных геометрических объектов (прямой, плоскости и др.), и как на чертеже провести новую ось проекций, чтобы в новой системе плоскостей заданные объекты заняли бы частные положения по отношению к новой плоскости проекций.

Упражнение

1. Спроецировать отрезок общего положения АВ в точку.

  1. Введём ДПП π4//А1В1 и π4⊥π1 (Рисунок 4.2). В новой системе двух взаимно перпендикулярных плоскостей проекций π14 отрезок АВспроецируется на π4 в натуральную величину и по этой проекции можем определить угол наклона отрезка к плоскости проекций π1

Упражнение

2. Дана плоскость общего положения – σ, заданная треугольником АВС (Рисунок 4.3).

Определить истинную величину треугольника.

  1. Введём ДПП π4⊥σ и π4⊥π1, для чего построим горизонталь в плоскости треугольника и проведём новую ось проекций π14⊥g1согласно теореме о перпендикуляре к плоскости. На π4 плоскость σ спроецируется в прямую, что означает σ⊥πp4.
  2. Введём ДПП π5//σ (π45//А4В4С4) и π4⊥π5. На π5 проекция А5В5С5 – есть истинная величина треугольника.

4.2. Способ вращения

Сущность способа вращения состоит в том, что положение системы плоскостей проекций считается неизменным в пространстве, а положение проецируемого объекта относительно неподвижных плоскостей изменяется.

Из сравнения сущности обоих способов видно, что решение задач, которые требуют применения преобразования ортогонального чертежа, может быть выполнено любым из этих способов, результат при этом должен получиться одинаковым. Основа выбора того или иного способа – рациональность решения.

Вращение заданных элементов будем осуществлять вокруг проецирующей прямой, то есть прямой, перпендикулярной какой-либо плоскости проекций, при этом все точки заданных элементов поворачиваются в одну и ту же сторону на один и тот же угол (Рисунок 4.4, а и б). Ось вращения и объект вращения составляют твёрдое тело.

А – точка в пространстве;

О – центр вращения точки А;

АО – радиус вращения


а б

Рисунок 4.4 – Способ вращения вокруг прямой, перпендикулярной π2

Точка описывает в пространстве окружность радиусом АО. Плоскость окружности перпендикулярна оси вращения (σ⊥m).

Читайте также:  Расчет амортизации линейный способ автомобиль

Так как m⊥π2 , то σ//π2, следовательно, σ⊥π1, ⇒ σ1m1, и поэтому σ проецируется на π1 в виде прямой, перпендикулярной проекции оси вращения, а на π2 траектория вращающейся точки проецируется в виде окружности с центром О2m2.

Пусть ось вращения m⊥π1 (Рисунок 4.5, а и б). Плоскость окружности σ⊥m.


а б
Рисунок 4.5 – Вращение вокруг прямой, перпендикулярной π1
\left.\begin\sigma\parallel\pi_1\\\sigma\perp \pi_2\\\end\right\> npu\;m\perp\pi_1\Longrightarrow\sigma_2\perp m_2
Свойства проекций

  1. На плоскость проекций, перпендикулярную оси вращения, траектория вращающейся вокруг этой оси точки проецируется без искажения, то есть в окружность с центром, совпадающим с проекцией оси вращения на эту плоскость и радиусом, равным расстоянию от вращаемой точки до оси вращения.
  2. На плоскость проекций, параллельную оси вращения, траектория вращающейся точки проецируется в отрезок, перпендикулярный проекции оси вращения на эту плоскость.
  3. На плоскость проекций, перпендикулярную оси вращения, проекция вращаемого объекта своих размеров и формы не меняет.

Упражнение

Дано : отрезок общего положения – АВ.

Определить : способом вращения истинную величину отрезка и углы наклона его к плоскостям проекций.

1. Выберем ось вращения m⊥π1 и проходящую через точку В (Рисунок 4.6).

На плоскости проекций π2 проекция траектории перемещения точки А – прямая,

A_2 \overline\perp m_2\;u\;A_2\overline\parallel\pi_2/\pi_1

На плоскости проекций π1 проекция траектории перемещения точки А – окружность радиусом |А1В1|.

Повернем отрезок до положения, параллельного плоскости проекций π2. Получим натуральную величину отрезка.

Угол наклона отрезка АВ к плоскости проекций π1 будет угол
\alpha=\angle\widehat_2> .

Для того, чтобы определить угол наклона АВ к плоскости проекций π2, надо ввести новую ось вращения перпендикулярно π2 и повторить построения.

4.3. Определение истинной величины треугольника способом вращения

Пусть плоскость σ задана треугольником. Необходимо определить истинную величину треугольника (Рисунок 4.7).

Одним поворотом вокруг оси, перпендикулярной к плоскости проекций, истинную форму треугольника получить нельзя (так же как и введением одной ДПП).

Вращая вокруг оси m, перпендикулярной π1 можно расположить плоскость ΔАВС⊥π2 (а вращая вокруг оси n⊥π2 можно расположить плоскость ΔАВС⊥π1).


Рисунок 4.7

  1. Положим σ’ должна быть перпендикулярна π2. Для чего построим CD – горизонталь h плоскости σ. Введём первую ось вращения m⊥π1, например, через точку С.
  2. Повернём треугольник вокруг m до положения, когда
    \overline\perp\pi_2\Rightarrow\overline_1\overline_1\perp\pi_2/\pi_1
    На основании 3-го свойства, новая горизонтальная проекция треугольника \overline по величине должна равняться A1B1C1, а фронтальная проекция треугольника будет представлять отрезок.
  3. Введём вторую ось вращения n⊥π2 через точку \overline_2 . Повернём фронтальную проекцию \overline в новое положение \overline<\overline\overline\overline>\parallel\pi_2/\pi_1 . На π1 получим треугольник \overline<\overline\overline\overline> , равный истинной величине треугольника АВС.

4.4. Задачи для самостоятельной работы

Двумя способами преобразования ортогонального чертежа:

1. Определить расстояние от точки D до отрезка АВ – общего положения (Рисунок 4.8).


Рисунок 4.8

2. Определить расстояние между двумя параллельными прямыми общего положения (АВ//CD) (Рисунок 4.9).


Рисунок 4.9

3. Определить расстояние между двумя скрещивающимися прямыми, заданными отрезками АВ и CD (Рисунок 4.10).


Рисунок 4.10

4. Построить недостающую проекцию точки D при условии, что задана σ=ΔАВС – общего положения и первая проекция точки D1, Dотстоит от плоскости σ на 30 мм (Рисунок 4.11).


Рисунок 4.11

5. Дан отрезок АВ – общего положения. Ось вращения не проходит через АВ (Рисунок 4.12). Определить способом вращения истинную величину АВ.


Рисунок 4.12

6. Задана прямая общего положения m и точка А вне прямой. Построить плоскость, проходящую через точку А и перпендикулярную прямой m (Рисунок 4.13).


Рисунок 4.13

Источник

Оцените статью
Разные способы