- Аналитические методы решения линейных уравнений с параметрами. консультация по алгебре (11 класс) на тему
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- Вычислительная математика копия 1
- 1.1 Отделение корня
- Графический метод отделения корня
- 1.2 Уточнение корня методом деления отрезка пополам
- 1.3 Метод хорд
- Отделение корней В Excel
- Лабораторная работа
- Отделение корней нелинейного уравнения
- Аналитический способ отделения корней
Аналитические методы решения линейных уравнений с параметрами.
консультация по алгебре (11 класс) на тему
В работа рассмотрены различные подходы к решению линейных уравнений с параметрами.
Скачать:
Вложение | Размер |
---|---|
parametry.docx | 31.82 КБ |
Предварительный просмотр:
Аналитические методы решения линейных уравнений с параметрами.
В работе рассмотрены различные подходы к решению линейных уравнений с параметрами. Данная тема необходима учащимся для первичного ознакомления с методами решения уравнений с параметрами, которая является опорным пунктом подготовки к ЕГЭ (решение заданий части «С5»).
- Понятие уравнений с параметрами.
- Различные виды и методы решений линейных уравнений с параметрами.
- Задания для самостоятельной работы.
Рассмотрим уравнения, в которых некоторые коэффициенты заданы не конкретными числами, а обозначены буквами. Такие уравнения называются уравнениями с параметрами, а буквы – параметрами. Предполагается, что эти параметры могут принимать любые числовые значения.
Решить уравнение с параметрами – значит, найти множество всех корней данного уравнения в зависимости от допустимого значения параметра. (Т.е. указать, при каких значениях параметра существуют решения, и каковы они, затем исследовать его относительно параметра)
Алгоритм решения уравнений с параметрами примерно таков:
- Разбить область изменения параметра на промежутки, где при изменении параметра в каждом из них полученные уравнения решаются одним и тем же методом.(Границами промежутков служат те значения параметра, в которых, или при переходе через которые, происходит качественное изменение уравнения. Такие значения параметра называют «особыми» или контрольными).
- Отдельно на каждом промежутке находятся корни уравнения, выраженные через значения параметра.
- Ответ уравнения состоит из списков изменения параметра с указанием всех корней для каждого промежутка (или конкретных значений параметра).
Основные методы решения уравнений с параметрами.
- Решение простейших линейных уравнений с параметрами.
Исследуем линейное уравнение вида: ax =b (1)
- а 0, b R, то уравнение (1) имеет единственный корень х= .
- а=0, b=0, уравнение (1) имеет корнем любое действительное число, т.е. х R.
- а 0, 0, уравнение (1) не имеет корней.
Пример №1: ax = 5; при a=0 имеем 0х=5, чего не может быть,
тогда х , при а 0 х= .
Пример №2: 0х=а; при а=0 получим 0х=0 х R, при а 0 х .
Пример №3 : Iхl=а, при а=0 х=0; при а>0 х= а, при а х .
Приведем уравнение к виду: х(а-1)=6;
если а=1, то 0х=6, нет решений;
Ответ: при а 1 х = ; при а=1 нет решений.
- Более сложные линейные уравнения с параметром, при решении которых требуется дополнительная проверка, связанная с ограничением на ОДЗ.
Алгоритм решения таких уравнений:
- Найти ОДЗ.
- Решить уравнение относительно х.
- Определить контрольные значения параметра (к.з.п.)
- Проверить, нет ли таких значений параметра, при которых значение х было бы равно числу, не входящему в ОДЗ.
- ОДЗ: х 2
- К.з.п. а=0.
- Решим уравнение относительно х:
- При а=0 уравнение имеет вид =3. Уравнение корней не имеет.
- При а 0 уравнение имеет вид а=3(х-2), отсюда х=
- Проверим, нет ли таких значений параметра а, при которых х=2, т.е. решим уравнение: =2, а=0 ( т.е. приа=0 нет решений)
Ответ: при а 0 х= ; при а=0 нет решений.
2. Решим уравнение относительно х. Умножим обе части уравнения на а 0: 2(а-1)х=(х-1)а +5;
2ах -2х – ах = 5 – а;
- К.з.п. а = 2, т.к. коэффициент при х обращается в 0 при а=2
- Если а=2, то 0х=3, нет решений;
- Если а 2, то х = .
Ответ: при а=2 нет решений; при а 2 и при а 0 х = ; при а=0 уравнение не имеет смысла.
Примечание. Если при каком-нибудь значении параметра а=а 0 данное уравнение не имеет смысла, то нет и решений при а=а 0. Обратное утверждение не верно. Бывает, что при контрольном значении параметра уравнение имеет корни, но они не входят в ОДЗ.
3.Уравнения, сводящиеся к линейным
Пример №1 Решить уравнение: m = +
- ОДЗ: т 0, х 1.
- Решим уравнение относительно х. Умножим обе части уравнения на т(х-1) 0, получим т 2 (х-1) = х – 1 + т – 1;
Х( т 2 – 1) = т 2 + т – 2;
- К.з.п. т= 1
- Если т=1, то 0х=0, следовательно, х-любое действительное число, где х 1.
- Если т=-1, то 0х=-2, нет решений.
- Если т 1 и т то х= .
- Если т = 0, то нет решений.
- Проверим, нет ли значений параметра а, при которых найденное значение х равно 1:
= 1, т+2=т+1, 0т=1, нет решений.
Ответ: при т=0 и т=-1 нет решений; при т=1 х (-∞;1) (1;+∞); при т 1 и
Пример №2 Решить уравнение: = .
2)Решим уравнение относительно х: (a+b)х = a – b.
3) К.з.п.: a+b = 0, a = -b.
- Если a = -b, то нет решений.
- Если a -b, то х = .
- Найдем значения параметров а и b, при которых полученное значение х=1:
1 = , 2b = 0, b = 0. Следовательно, при b = 0 нет решений.
Ответ: при a -b и b 0 х = ; при a = -b и b=0 нет решений.
Пример №3 (МГУ, 2002) При каких значениях параметра b уравнение
9х+ b 2 – (2 — )b — 2 = b 4 х – b 2 (b + ) не имеет корней?
- ОДЗ: х .
- Решим уравнение относительно х:
(b 4 – 9)х = b 3 + (1+ ) b 2 – (2 — )b -2 ,
Линейное уравнение не имеет корней тогда и только тогда, когда
Первое уравнение системы имеет два корня: b 1 = , b 2 = — .
- Подставим во второе уравнение системы b 1 = , получим: 2 +6 ;
b 2 = — , получим 0=0. Т.е. второму условию удовлетворяет b 1 = .
Ответ: при b= уравнение корней не имеет.
Решить самостоятельно уравнения
1) (а+5)(а-3)х=а 2 — 25 ( при а и а х= ; при а=3 ; при а=-5 х ∊ R)
2) а 2 х = а(х+2) – 2 ( при а и а х= ; при а=0 ∅ ; при а=1 х ∊ R)
3) = — ( при а=-3, а=-2, а=1/2 ∅ ; при а и а х= )
4)1+ = — ( при а и а х= ; при а=-3, а=0, а=1 ∅ )
5) Для каких значений а решение уравнения 10х-15а = 13- 5ах = 2а больше 2? (МГУ, 1982)
- Г.А. Ястребинецкий. Уравнения и неравенства, содержащие параметры. М. Просвещение.1972.
- А.Г. Корянов. Задачи с параметрами. Брянск.2010.
- М.А. Галицкий, А.М.Гольдман, Л.И. Звавич. Сборник задач по алгебре для 8-9 классов. Углубленное изучение математики. М. Просвещение. 1992.
По теме: методические разработки, презентации и конспекты
Предлагаемый курс «Методы решения задач с параметром» предназначен для реализации в 10 классах для расширения теоретичес.
Решение задач с параметрами систематизирует знание основных разделов школьной математики, повышает уровень математического и логического мышления, формирует первоначальные навыки исследовательской дея.
Одними из наиболее сложных задач для учащихся в курсе математики — это задачи с параметрами, так как требуют от них умения рассуждать логически и анализировать полученные решения. С одной сторон.
урок в 11 классе.
Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, ч.
В действующем формате ЕГЭ по математике (профильный уровень) задания №18 содержат параметры и предполагают исследование свойств различных элементарных функций. Поэтому подготовку к и.
Данный материал предназначен для обучающихся 10-11 классов и содержит задания для подготовки к ЕГЭ по теме «Задание №18. Решение задач с параметром». Он направлен на совершенствование умений.
Источник
Вычислительная математика копия 1
Уравнение называется алгебраическим, если его можно представить в виде:
Формула (1.1) – каноническая форма записи алгебраического уравнения. Если уравнение f(x)=0 не удается привести к виду (1.1) заменой переменных, то уравнение называется трансцендентным.
Решить уравнение означает найти такие значения x , при которых уравнение превращается в тождество.
Известно, что уравнение (1.1) имеет ровно n корней – вещественных или комплексных. Если n =1, 2, 3 [и иногда 4 (биквадратное уравнение], то существуют точные методы решения уравнения (1.1). Если же n >4 или уравнение – трансцендентное, то таких методов не существует, и решение уравнения ищут приближенными методами. Всюду при дальнейшем изложении будем предполагать, что f(x) – непрерывная функция. Методы, которые мы рассмотрим, пригодны для поиска некратных (то есть изолированных) корней.
1.1 Отделение корня
Решение уравнения состоит из двух этапов: 1 – отделение корня, 2 – его уточнение.
Отделить корень – значит указать такой отрезок [a , b] , на котором содержится ровно один корень уравнения f(x)=0.
Не существует алгоритмов отделения корня, пригодных для любых функций f (x). Если удастся подобрать такие a и b , что
2) f ( x ) – непрерывная на [ a , b ] функция (1.3)
3) f ( x ) – монотонная на [ a , b ] функция (1.4)
то можно утверждать, что на отрезке [a , b] корень отделен.
Условия (1.2) –(1.4) – достаточные условия того, что корень на [a , b] отделен, то есть если эти условия выполняются, то корень отделен, но невыполнение, например, условий (1.3) или (1.4) не всегда означает, что корень не отделен.
Корень можно отделить аналитически и графически.
Пример. Аналитически отделить положительный корень уравнения x 3 -7x-5=0 Решение. Составим таблицу
Графический метод отделения корня
1.2 Уточнение корня методом деления отрезка пополам
Уточнить корень – значит найти его приближенное значение с заданной погрешностью e .
Самый простой метод, пригодный для любых непрерывных функций – метод деления отрезка пополам.
Предположим, что отрезок [a , b], на котором отделен корень уравнения, уже найден.
Пусть, например, f(a)> 0, f(b) e 1=(b-a)/2. Если эта погрешность не превышает некоторую заданную погрешность e , с которой нужно уточнить корень уравнения, то вычисления прекращаем и можно записать: ?=x ±(b-a)/2 . В противном случае определяем новый отрезок [a , b], на котором отделен корень нашего уравнения. Для этого определим знак функции в точке х. В нашем примере f (x )>0. Новый отрезок – отрезок [x , b], так как на концах этого отрезка функция имеет разные знаки. Переобозначим один из концов отрезка – в нашем случае положим a = x — и повторим процедуру для нового отрезка [a , b].
1.3 Метод хорд
Идея метода состоит в следующем. Проводим прямую через точки с координатами (a ,f(a)), (b ,f(b)). Находим точку пересечения прямой с осью Х. Определяем знак функции в этой точке. Далее проводим прямую через те точки, абсциссы которых содержат корень уравнения ? . Вычисления прекращаются, как только выполнится условие |xn+1-xn| e .
Источник
Отделение корней В Excel
Лабораторная работа
Отделение корней нелинейного уравнения
Пусть имеется нелинейное уравнение .
Требуется найти корни этого уравнения. Численный процесс приближенного решения поставленной задачи разделяют два этапа: отделение корня и уточнение корня.
Для отделения корня необходимо определить промежуток аргумента , где содержится один и только один корень уравнения. Одна из точек этого промежутка принимается за начальное приближение корня. В зависимости от метода, который предполагается использовать для уточнения корня, требуется определение некоторых свойств отделенного корня и поведения функции на отрезке отделения. Например, при использовании метода деления пополам, необходимо и достаточно установить лишь непрерывность функции на отрезке отделения.
Этап отделения корня уравнения алгоритмизирован только для некоторых классов уравнений (наиболее известным из которых является класс алгебраических уравнений), поэтому отделение корней нелинейных уравнений, обычно, выполняется «вручную» с использованием всей возможной информации о функции . Часто применяется графический метод отделения действительных корней, обладающий большой наглядностью.
Методы отделения корней
Отделение корней во многих случая можно произвести графически. Учитывая, что действительные корни уравнения F ( x )=0 – это есть точки пересечения графика функции y = F ( x ) с осью абсцисс y =0, нужно построить график функции y = F ( x ) и на оси OX отметить отрезки, содержащие по одному корню. Но часто для упрощения построения графика функции y = F ( x ) исходное уравнение заменяют равносильным ему уравнением f 1 ( x )= f 2 ( x ). Далее строятся графики функций y 1 = f 1 ( x ) и y 2 = f 2 ( x ), а затем по оси OX отмечаются отрезки, локализующие абсциссы точек пересечения двух графиков.
На практике данный способ реализуется следующим образом: например, требуется отделить корни уравнения cos(2 x )+ x -5=0 графически на отрезке [–10;10], используя Excel .
Построим график функции f (x)=cos(2 x )+x-5 в декартовой системе координат. Для этого нужно:
Ввести в ячейку A1 текст х .
Ввести в ячейку B1 текст y =cos(2 x )+ x -5.
Ввести в ячейку А2 число -10, а в ячейку А3 число -9.
Выделить ячейки А2 и А3.
Навести указатель «мыши» на маркер заполнения в правом нижнем углу рамки, охватывающий выделенный диапазон. Нажать левую кнопку «мыши» и перетащить маркер так, чтобы рамка охватила диапазон ячеек А2:А22.
Ячейки автоматически заполняются цифрами :
Ввести в ячейку В2 формулу =COS(2*A2)+A2-5.
Методом протягивания заполнить диапазон ячеек В3:В22.
Вызвать «Мастер диаграмм» и выбрать диаграмму график (первый вид), нажать «далее».
Указать диапазон данных, для этого щелкнуть кнопку в поле «Диапазон» и выбрать диапазон данных В2:В22.
Выбрать вкладку ряд, указать имя ряда, щелкнув кнопку в поле «ряд» и выбрав В1.
В поле «подписи по оси Х», щелкнуть кнопку и выбрать диапазон А2:А22, нажать «далее».
Подписать названия осей x и y соответственно, нажать «далее».
Вывести диаграмму на том же листе, что и таблица, нажать кнопку «готово».
В итоге получаем следующее (рисунок 1):
Рисунок 1 – Локализация корня
Анализируя полученное изображение графика, можно сказать, что уравнение cos(2 x )+ x -5=0 имеет один корень – это видно из пересечения графика функции y=cos(2 x )+ x -5 с осью OX. Можно выбрать отрезок, содержащий данный корень: [5;6] – отрезок локализации .
Для подтверждения полученных данных, можно решить эту же задачу вторым способом. Для этого необходимо уравнение cos(2 x )+ x -5=0 преобразовать к виду: cos(2 x )=5- x . Затем следует каждую часть уравнения рассмотреть как отдельную функцию. Т. е. y 1 =cos(2 x ) и y 2 =5- x . Для решения этой задачи в Excel необходимо выполнить следующие действия:
Вести в ячейки А1:C1 соответственно текст: « x », « y 1 =cos(2 x )», « y 2 =5- x ».
A2:A22 заполнить так же как при решении задачи первым способом.
В В2 ввести формулу =COS(2*A2).
Методом протягивания заполнить диапазон ячеек В3:В22.
В С2 ввести =5-A2.
Методом протягивания заполнить диапазон ячеек С3:С22.
С помощью Мастера диаграмм выбрать график (первый вид).
В данном случае диапазон данных следует указывать для построения двух графиков. Для этого нужно нажать кнопку в поле «Диапазон» и выделить ячейки В2:В22, затем нажать Ctrl (на клавиатуре) и выделить следующий диапазон C2:C22.
Перейти на вкладку ряд, где выбрать именем ряда 1 ячейку В1, а именем ряда 2 ячейку С2.
Подписать ось x , выбрав диапазон А2:А22.
Подписать соответственно оси x и y .
Поместить диаграмму на имеющемся листе.
Результат представлен на рисунке 2: Анализируя полученный результат, можно сказать, что точка пересечения двух графиков попадает на тот же самый отрезок локализации [5;6] , что и при решении задачи первым способом.
Рисунок 2 – Локализация корня
Аналитический способ отделения корней
Аналитический способ отделения корней основан на следующей теореме , известной из курса математического анализа.
ТЕОРЕМА: Если непрерывная на функция
, определяющая уравнение
, на концах отрезка
принимает значения разных знаков, т.е.
, то на этом отрезке содержится, по крайней мере, один корень уравнения. Если же функция
непрерывна и дифференцируема и ее производная сохраняет знак внутри отрезка
, то на этом отрезке находится только один корень уравнения.
В случае, когда на концах интервала функция имеет одинаковые знаки, на этом интервале корни либо отсутствуют, либо их четное число.
Для отделения корней аналитическим способом выбирается отрезок , на котором находятся все интересующие вычислителя корни уравнения. Причем на отрезке
функция F (x) определена, непрерывна и F ( a )* F ( b ) . Требуется указать все частичные отрезки , содержащие по одному корню.
Б
удем вычислять значение функции F ( x ) , начиная с точки x = a , двигаясь вправо с некоторым шагом h . Если F ( x )* F (x+ h ) , то на отрезке [ x ; x + h ] существует корень (рисунок 3).
Рисунок 3 – Аналитический способ локализации корней
Доказательство существования и единственности корня на отрезке.
В качестве примера рассмотрим функцию f (x)=cos(2 x )+x-5 .
Ввести в ячейки А1, В1 и С1 соответственно « x », « y =cos(2 x )+ x -5» и «ответ».
В А2 и А3 ввести граничные значения отрезка изоляции.
В В2 ввести формулу =COS(2*A2)+A2-5 и методом протягивания заполнить В3.
В С2 ввести формулу =ЕСЛИ(B2*B3
Таким образом, на отрезке изоляции корень существует:
Р
исунок 4 – Проверка существования корня на отрезке
Для доказательства единственности корня на отрезке изоляции необходимо выполнить следующие действия:
Продолжить работу в том же документе MS Excel.
Заполнить D1 и E1 соответственно: « y’ =-sin(2 x )*2+1» и «ответ» (причем выражение y’ =-sin(2 x )*2+1 – это производная первого порядка от функции y =cos(2 x )+ x -5).
Ввести в D2 формулу =-SIN(2*A2)*2+1 и методом протягивания заполнить D3.
Ввести в E2 =ЕСЛИ(D2*D3>0;»корень на данном отрезке единственный»;»Корень не единственный»).
В
результате получаем (рисунок 5):
Рисунок 5 – Доказательство единственности корня на отрезке
Таким образом доказано существование и единственность корня на отрезке изоляции.
Рассмотрим решение задачи отделения корней уравнения
cos(2 x )+ x -5=0 аналитическим способом с шагом 1 на отрезке [-10;10].
Чтобы отделить корни уравнения аналитическим способом с помощью Excel, необходимо выполнить следующее:
Заполнить ячейки A1:D1 соответственно: « x », « y =cos(2 x )+ x -5», « h », «ответ».
В С2 ввести значение 1.
Ввести в А2 значение -10.
Ввести в А3 =A2+$C$2 и методом протягивания заполнить ячейки А4:А22.
В В2 ввести =COS(2*A2)+A2-5 и методом протягивания заполнить диапазон В3:В22.
В
С3 ввести формулу =ЕСЛИ(B2*B3
В результате получаем следующее (рисунок 6):
Рисунок 6 – Отделение корня
Следующий пример (рисунок 7) демонстрирует отделение нескольких корней. Пусть исследуется функция cos ( x )=0,1 x на интервале [–10;10] с шагом 1.
Табулирование функции и построение графика осуществляется как в предыдущих примерах. Видно, что на заданном отрезке имеем 7 корней, находящихся внутри отрезков: [-10;-9]; [-9;-8]; [-5;-4]; [-2;-1]; [1;2]; [5;6]; [7;8].
Рисунок 7 – Отделение корней
Обратим внимание на то, что надежность рассмотренного алгоритма отделения корней уравнения зависит как от характера функции F (x), так и от выбранной величины шага h . Для повышения надежности следует выбирать при отделении корней достаточно малые значения h .
1. Выполнить отделение корней следующих функций:
Источник