- Неопределенный интеграл
- Методы интегрирования
- Метод непосредственного интегрирования
- Метод подстановки
- Метод подведения под знак дифференциала
- Метод интегрирования по частям
- Решение задач по математике онлайн
- Калькулятор онлайн. Вычислить неопределенный интеграл (первообразную).
- Немного теории.
- Первообразная (неопределенный интеграл)
- Методы интегрирования
Неопределенный интеграл
Неопределенный интеграл онлайн
В школе говорят, интеграл – это значок ∫, а вычисление интеграла, то есть процесс интегрирования, – это операция обратная дифференцированию. Согласитесь скучно!
Разумеется, у школьников возникает резонный вопрос: а нафиг он нам нужен?
Но если бы учитель уделил несколько минут на вводную про интегралы, такой вопрос всё равно бы возник, но уже не у всех!
Вводная к интегралам
В далеком 17 веке были на тот момент нерешенные насущные проблемы, а именно изучались закономерности движения тел. Много трудов было проделано Ньютоном, чтобы понять, как вычисляется скорость тела в любой момент времени. Но чем дальше, тем оказалось интереснее.
Допустим, мы знаем закон изменения скорости тела – это некая функция. Тогда площадь фигуры, ограниченная этой кривой и осью координат, будет равна пройденному пути. Вычисляя неопределенный интеграл от функции, мы как раз находим общий закон движения.
В этом заключается один из физических смыслов интеграла.
Как вы уже поняли, геометрический смысл интеграла – это площадь криволинейной трапеции. Соответственно с помощью кратного интеграла вычисляется объем тела.
Лейбниц и Ньютон заложили основы дифференциального и интегрального исчисления. В последующие десятилетия было много великих открытий, связанных с вычислением интегралов.
Поскольку подынтегральная функция может принимать различные виды, естественно это привело к разделению интегралов на свои типы, а главное были отрыты многочисленные методы решения интегралов.
Но не все так безоблачно. На практике часто происходит так, что в аналитическом виде вычислить интегралы невозможно, то есть используя какой-либо известный метод. Конечно, получить аналитическое решение это здорово, но, с другой стороны, главное ведь вычислить точное значение интеграла. В этом случае интегралы решаются численными методами. Благодаря компьютерным мощностям, такие задачи не представляют особых сложностей для современного человека.
Калькулятор решения интегралов
Теперь самое интересное. Еще каких-то 15 лет назад школьник и помыслить не мог, что под рукой будут такие калькуляторы интегралов, как, например, наш. Это безусловно облегчает процесс обучения. Можно проверять свои решения, находить допущенные ошибки и лучше усваивать образовательный курс.
И тут в который раз повторяем, калькулятор решения интегралов – это только ваш безотказный помощник, к которому можете обратиться в любое время. Но никак не подмена вашей головы. Старайтесь самостоятельно решать задачи, только так можно развивать мышление, а компьютер будет в помощь.
Источник
Методы интегрирования
Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.
В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.
Метод непосредственного интегрирования
Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.
Вычислите множество первообразных функции f ( x ) = 2 x + 3 2 · 5 x + 4 3 .
Решение
Для начала изменим вид функции на f ( x ) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .
Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:
∫ f ( x ) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x
Выводим за знак интеграла числовой коэффициент:
∫ f ( x ) d x = ∫ 2 x d x + ∫ 3 2 ( 5 x + 4 ) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ ( 5 x + 4 ) 1 3 d x
Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1
Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F ( k · x + b ) + C .
Следовательно, ∫ f ( x ) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · ( 5 x + 4 ) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
У нас получилось следующее:
∫ f ( x ) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · ( 5 x + 4 ) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
причем C = C 1 + 3 2 C 2
Ответ: ∫ f ( x ) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C
Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.
Метод подстановки
Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.
Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.
Вычислите неопределенный интеграл ∫ 1 x 2 x — 9 d x .
Решение
Добавим еще одну переменную z = 2 x — 9 . Теперь нам нужно выразить x через z :
z 2 = 2 x — 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 ‘ d z = 1 2 ·2 z d z = z d z
Далее подставляем полученные выражения в исходный интеграл и получаем:
∫ d x x 2 x — 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9
Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .
Теперь нам нужно вернуться к переменной x и получить ответ:
2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x — 9 3 + C
Ответ: ∫ 1 x 2 x — 9 d x = 2 3 a r c t g 2 x — 9 3 + C .
Если нам приходится интегрировать функции с иррациональностью вида x m ( a + b x n ) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.
Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.
Этот метод объясняет правило интегрирования ∫ f ( k · x + b ) d x = 1 k · F ( k · x + b ) + C .
Добавляем еще одну переменную z = k · x + b . У нас получается следующее:
x = z k — b k ⇒ d x = d z k — b k = z k — b k ‘ d z = d z k
Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:
∫ f ( k · x + b ) d x = ∫ f ( z ) · d z k = 1 k · ∫ f ( z ) d z = = 1 k · F z + C 1 = F ( z ) k + C 1 k
Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:
F ( z ) k + C 1 k = 1 k · F k x + b + C
Метод подведения под знак дифференциала
Это метод основывается на преобразовании подынтегрального выражения в функцию вида f ( g ( x ) ) d ( g ( x ) ) . После этого мы выполняем подстановку, вводя новую переменную z = g ( x ) , находим для нее первообразную и возвращаемся к исходной переменной.
∫ f ( g ( x ) ) d ( g ( x ) ) = g ( x ) = z = ∫ f ( z ) d ( z ) = = F ( z ) + C = z = g ( x ) = F ( g ( x ) ) + C
Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.
Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.
Вычислите неопределенный интеграл ∫ c t g x d x .
Решение
Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.
c t g x d x = cos s d x sin x
Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d ( sin x ) , значит:
c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .
Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .
Все решение в кратком виде можно записать так:
∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C
Ответ: ∫ с t g x d x = ln sin x + C
Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.
Метод интегрирования по частям
Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f ( x ) d x = u ( x ) · v ‘ x d x = u ( x ) · d ( v ( x ) ) , после чего применяется формула ∫ u ( x ) · d ( v ( x ) ) = u ( x ) · v ( x ) — ∫ v ( x ) · d u ( x ) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.
Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.
Вычислите неопределенный интеграл ∫ a r c t g ( 2 x ) d x .
Решение
Допустим, что u ( x ) = a r c t g ( 2 x ) , d ( v ( x ) ) = d x , в таком случае:
d ( u ( x ) ) = u ‘ ( x ) d x = a r c t g ( 2 x ) ‘ d x = 2 d x 1 + 4 x 2 v ( x ) = ∫ d ( v ( x ) ) = ∫ d x = x
Когда мы вычисляем значение функции v ( x ) , прибавлять постоянную произвольную С не следует.
Далее используем формулу интегрирования по частям и получаем:
∫ a r c t g ( 2 x ) d x = u ( x ) · v ( x ) — ∫ v ( x ) d ( u ( x ) ) = = x · a r c t g ( 2 x ) — ∫ 2 x d x 1 + 4 x 2
Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.
Поскольку ∫ a r c t g ( 2 x ) d x = u ( x ) · v ( x ) — ∫ v ( x ) d ( u ( x ) ) = x · a r c t g ( 2 x ) — ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d ( 1 + 4 x 2 ) .
∫ a r c t g ( 2 x ) d x = x · a r c t g ( 2 x ) — ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g ( 2 x ) — 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g ( 2 x ) — 1 4 ln 1 + 4 x 2 + C
Ответ: ∫ a r c t g ( 2 x ) d x = x · a r c t g ( 2 x ) — 1 4 ln 1 + 4 x 2 + C .
Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u ( x ) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.
Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.
Если мы интегрируем степенное выражение вида sin 7 x · d x или d x ( x 2 + a 2 ) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.
Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.
Источник
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Вычислить неопределенный интеграл (первообразную).
Этот математический калькулятор онлайн поможет вам вычислить неопределенный интеграл (первообразную). Программа для вычисления неопределенного интеграла (первообразной) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите подинтегральную функцию Вычислить
Немного теории.
Первообразная (неопределенный интеграл)
Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.
Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача — задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.
Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \( s(t) = \frac
\( s'(t) = \left( \frac
Ответ: \( s(t) = \frac
Сразу заметим, что пример решен верно, но неполно. Мы получили \( s(t) = \frac
Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s0, то из равенства s(t) = (gt 2 )/2 + C получаем: s(0) = 0 + С, т. е. C = s0. Теперь закон движения определен однозначно: s(t) = (gt 2 )/2 + s0.
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2 ) и извлечение квадратного корня ( \( \sqrt
Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у’ = f'(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у’ = f'(x), первичный образ, или первообразная.
Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \( x \in X \) выполняется равенство F'(x) = f(x)
На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).
Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2 )’ = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3 )’ = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))’ = cos(x)
При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.
Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.
Правило 1. Первообразная суммы равна сумме первообразных.
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.
Правило 2. Если F(x) — первообразная для f(x), то kF(x) — первообразная для kf(x).
Теорема 1. Если y = F(x) — первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \( y=\frac<1>
Теорема 2. Если y = F(x) — первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.
Методы интегрирования
Метод замены переменной (метод подстановки)
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \( \textstyle \int F(x)dx \). Сделаем подстановку \( x= \varphi(t) \) где \( \varphi(t) \) — функция, имеющая непрерывную производную.
Тогда \( dx = \varphi ‘ (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\( \int F(x) dx = \int F(\varphi(t)) \cdot \varphi ‘ (t) dt \)
Интегрирование выражений вида \( \textstyle \int \sin^n x \cos^m x dx \)
Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.
Интегрирование по частям
Интегрирование по частям — применение следующей формулы для интегрирования:
\( \textstyle \int u \cdot dv = u \cdot v — \int v \cdot du \)
или:
\( \textstyle \int u \cdot v’ \cdot dx = u \cdot v — \int v \cdot u’ \cdot dx \)
Источник