Натуральная величина плоской фигуры способом вращения вокруг проецирующей прямой

Натуральная величина плоской фигуры способом вращения вокруг проецирующей прямой

§ 23. Способы определения натуральной величины отрезка прямой линии и плоской фигуры

Элементы деталей, наклонные к плоскостям проекций, проецируются на них с искажением размеров. Однако в некоторых случаях требуется получить на чертеже натуральную величину отрезков прямых линий или плоских фигур, в частности при построении разверток.

Натуральные размеры отрезков линий и фигур получаются на той плоскости проекций, параллельно которой они расположены. Следовательно, чтобы определить натуральную величину отрезка линии или фигуры, необходимо, чтобы плоскость проекции была параллельна изображаемому элементу. Для этого применяют способ вращения и способ перемены плоскостей проекций.

Способ вращения. Способ вращения заключается в том, что отрезок прямой линии или плоскую фигуру вращают вокруг выбранной оси до положения, параллельного плоскости проекций.

На рис. 173 показано, как определить способом вращения натуральную длину отрезка АВ прямой, наклонной к плоскостям проекций. На наглядном изображении (рис. 173, а) видно, что отрезок А В прямой не параллелен плоскостям проекций и, следовательно, проекции а’b’ и ab отрезка изображаются искаженными. Нужно повернуть отрезок вокруг оси Аа, перпендикулярной к плоскости H, в направлении, указанном стрелкой, до положения, при котором отрезок станет параллельным плоскости V, т. е. в положение, обозначенное АВ1. Тогда горизонтальная проекция аb отрезка АВ расположится параллельно плоскости V (параллельно оси х); обозначим ее аb1. В этом положении проекция отрезка на плоскость V — линия а’b’ представляет собой натуральную величину отрезка АВ.

Построение на чертеже начинают с горизонтальной проекции (рис. 173, б). Из точки а, как из центра, радиусом, равным ab, описывают дугу окружности bb1 до пересечения с прямой, проведенной из точки а параллельно оси х. Получают новую горизонтальную проекцию b1 точки В. Фронтальную проекцию b`1 точки b1 получают, восставив из нее перпендикуляр к оси х. Соединив прямой точку а’ с точкой b` получают натуральную длину отрезка АВ.

На рис. 173, в показано, как можно данное построение применить к определению натуральной длины наклонного ребра треугольной пирамиды.


Рис. 173. Определение натуральной длины отрезка прямой способом вращения

Способ перемены плоскостей проекций. Этот способ отличается от способа вращения тем, что проецируемая линия или фигура остается неподвижной, а одну из плоскостей проекций заменяют новой дополнительной плоскостью, на которую и проецируют изображаемый элемент.

В пересечении новой плоскости Н1 с плоскостью V (рис. 174, а) получают новую ось проекций х1. Новую систему плоскостей на чертеже обозначают H1/V

Дополнительную плоскость проекций Н1 выбирают так, чтобы она была перпендикулярна фронтальной плоскости проекций V (рис. 174, а) и параллельна линии или плоскости фигуры, натуральную величину которой нужно определить. Линия или фигура спроецируется на дополнительную плоскость без искажений; новая ось проекций хх будет параллельна фронтальной проекции наклонной грани (рис. 174, б).

Рассматривая рис. 174, а и б, можно установить, что при перемене горизонтальной плоскости Н на новую Н1 расстояние новой горизонтальной проекции любой точки до оси проекций х 1 будет равно расстоянию прежней горизонтальной проекции этой точки до прежней оси проекций, т. е. расстояние точки А от плоскости V остается неизменным. Этим и пользуются при построении проекций фигур на дополнительную плоскость, которую затем совмещают с плоскостью чертежа.

На рис. 174, а точка А спроецирована сначала на плоскости V и H, т. е. получены ее проекции а’ и а. Затем взята дополнительная плоскость H1 перпендикулярная к плоскости V, и точка А спроецирована на дополнительную плоскость. Для этого из фронтальной проекции a` до точки А опущен перпендикуляр на плоскость H1 пересечение которого с плоскостью дало точку ах1. Затем от точки аx1 отложено расстояние, равное аах, и получена искомая проекция a1 точки А на дополнительную плоскость. Наклонная линия x1 на чертеже обозначает новую ось проекций. Важно отметить, что фронтальная и новая проекции точки А лежат на одном перпендикуляре к оси х1.

На рис. 174, б дано наглядное изображение четырехугольной призмы, верхняя грань которой наклонна. Чтобы определить натуральную величину верхней наклонной грани призмы, ее необходимо спроецировать на дополнительную плоскость. Построение проводят в следующем порядке. Вычерчивают фронтальную и горизонтальную проекции призмы. На произвольном расстоянии проводят новую ось проекции х1 параллельно фронтальной проекции изображаемой грани. Из фронтальных проекций вершин наклонной грани — точек а`, b`, с`, d’ восставляют перпендикуляры к новой оси x1. На перпендикулярах от новой оси х1 откладывают отрезки, равные расстояниям горизонтальных проекций этих точек от оси х. Соединив полученные точки а1, b1, с1, d1 прямыми линиями, получают натуральную величину грани.

Читайте также:  Способ разведения розы от черенка


Рис. 174. Определение натуральной величины фигуры способом перемены плоскостей проекций

Изображение детали на дополнительной плоскости называют дополнительным видом, который отмечают на чертежах надписью типа «Вид А», «Вид Б», подчеркнутой тонкой линией. У связанного с дополнительным видом изображения наносят стрелку, указывающую направление взгляда, с соответствующим буквенным обозначением (рис. 175, a), при этом выбирают одну из прописных букв русского алфавита. Дополнительный вид допускается повертывать, но, как правило, с сохранением положения, принятого для данного предмета на главном изображении, при этом к надписи «Вид Б» должно быть добавлено слово «повернуто», располагаемое в строчку с надписью (рис. 175, б). Когда дополнительный вид расположен в непосредственной проекционной связи с соответствующим изображением, стрелку и надпись над видом не наносят (рис. 175, в).


Рис. 175. Расположение и обозначение дополнительных видов

Ответьте на вопросы

1. Как обозначают на чертежах дополнительные виды?

2. Чем отличается способ вращения от способа перемены плоскостей проекции? Для чего эти способы применяются?

Источник

Научная электронная библиотека

Пиралова О. Ф., Ведякин Ф Ф.,

5.5. Способ вращения. Вращение вокруг проецирующей прямой

Сущность этого способа заключается в том, что система плоскостей проекций П2/П1 остается неподвижной, а положение геометрических элементов изменяется путем вращения вокруг одной или двух выбранных осей до нужного положения в данной системе. В качестве оси вращения в этом случае удобнее всего выбирать проецирующие прямые или прямые уровни, тогда точка будет вращаться в плоскостях, параллельных или перпендикулярных плоскостям проекций.

При вращении используются следующие элементы вращения:

– ось вращения – прямая, вокруг которой осуществляется вращение.

– плоскость вращения – плоскость, проходящая через вращаемую точку и перпендикулярная оси вращения (плоскость окружности, которую описывает точка при вращении).

– центр вращения – точка пересечения оси вращения и плоскости вращения.

– радиус вращения – кратчайшее расстояние от вращаемой точки до центра (оси) вращения. Радиус всегда перпендикулярен оси вращения.

– угол поворота – угол между начальным и конечным положением радиуса вращения.

При вращении системы точек вокруг одной оси все точки вращаются в плоскостях, параллельных между собой, поворачиваются на один и тот же угол в одном и том же направлении, поэтому вращение является частным случаем плоскопараллельного перемещения. Точки, находящиеся на оси вращения остаются неподвижными.

Способ вращения состоит в том, что данная геометрическая фигура вращается вокруг некоторой неподвижной оси до требуемого положения относительно неподвижных плоскостей проекций. При этом каждая точка фигуры, например точка А (рис. 5.13), описывает окружность, расположенную в плоскости β, перпендикулярной оси вращения i. Центр O этой окружности является точкой пересечения оси вращения с плоскостью β. Радиус окружности равен расстоянию точки А до оси i (|R| = |AO|).

При вращении точки вокруг оси, перпендикулярной горизонтальной плоскости проекций, ее фронтальная проекция перемещается перпендикулярно линиям связи, а горизонтальная – по окружности, центром которой является горизонтальная проекция оси вращения.

Рис. 5.13. Пример вращения точки вокруг оси,
перпендикулярной плоскости

При вращении точки вокруг оси, перпендикулярной фронтальной плоскости проекций, ее горизонтальная проекция перемещается перпендикулярно линиям связи, а фронтальная – по окружности, центром которой является фронтальная проекция оси вращения (рис. 5.14).

Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i (i1,i2,i3).

При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i (i1,i2,i3). Поскольку i ⊥ П1, а β(β2) ⊥ i, β(β2) // П1 и угол поворота проецируется на П1 в натуральную величину.

Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i (i1,i2,i3).

При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i (i1,i2,i3). Поскольку i ⊥ П1, а β(β2) ⊥ i, β(β2) // П1 и угол поворота проецируется на П1в натуральную величину.

Таким образом, при вращении вокруг горизонтально проецирующей прямой i(i1,i2) проекции точки A1, А’1, А»1, А»’1 перемещаются по окружности ℓ1 с центром в точке О1 и радиусом R = R1 = ОА = O1A1, фронтальные проекции A2, А’2, А»2, А»’2 перемещается по проекции фронтального следа плоскости β2 в пределах отрезка [А2,А»2].

Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i(i1,i2,i3).

Рис. 5.14. Пример вращения точки А вокруг
горизонтально проецирующей прямой i (i ⊥ П1)

При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i(i1,i2,i3). Поскольку i ⊥ П, а β(β2) ⊥ i, β(β2) // П1 угол поворота проецируется на П1в натуральную величину.

Таким образом, при вращении вокруг горизонтально проецирующей прямой i(i1,i2) проекции точки A1, А’1, А»1, А»’1перемещаются по окружности ℓ1 с центром в точке О1 и радиусом R = R1= ОА = O1A1, фронтальные проекции A2, А’2, А»2, А»’2 перемещается по проекции фронтального следа плоскости β2 в пределах отрезка [А2, А»2].

Читайте также:  Документы по способу отражения подразделяется

Если точка А вращается вокруг оси i ⊥ П1, то плоскость β, в которой располагается окружность, описываемая точкой, становится горизонтальной плоскостью уровня (β || П1).

Следовательно, окружность, описываемая точкой А в пространстве, спроецируется на плоскость П1 без искажения, а на плоскость П2 – в отрезок прямой A2 А»2, совпадающей с фронтальным следом плоскости β2.

Таким образом, вращение точки A вокруг горизонтально проецирующей прямой i(i1,i2) на комплексном чертеже (рис. 5.15.а) изображено следующим образом:

1) горизонтальная проекция A1, точки А перемещается по окружности радиуса | R | = | АО | = | А1О1 |;

2) фронтальная проекция А2 точки А перемещается по прямой, перпендикулярной линиям связи (вырожденная фронтальная проекция β2 плоскости β ║П1);

3) угол поворота φ° горизонтальной проекции A1 точки А равен углу поворота точки в пространстве.

Рис. 5.15. Вращение точки А вокруг горизонтально проецирующей (а)
и фронтально проецирующей (б) прямых

Вращение точки A вокруг фронтально проецирующей прямой i(i1,i2) на комплексном чертеже (рис. 5.15.б) изображено следующим образом:

4) фронтальная A2, точки А перемещается по окружности радиуса R = | АО | = | А2О2 |;

5) горизонтальная проекция А1 точки А перемещается по прямой, перпендикулярной линиям связи (вырожденная горизонтальная проекция β1 плоскости β ║П2);

6) угол поворота φ° фронтальной проекции точки А равен углу поворота точки в пространстве.

Способом вращения тоже можно решать все основные на преобразование комплексного чертежа.

Задача 1. Преобразовать прямую общего положения в линию уровня.

Для того чтобы прямую общего положения ℓ(ℓ1, ℓ2) преобразовать, например, во фронталь, ее необходимо вращать около оси i ⊥ П1 (рис. 5.16).

Рис. 5.16. Преобразование прямой линии общего положения
во фронтальную (фронталь) прямую

Для решения задачи необходимо:

1) выбрать две точки А(А1А2) и В(В1В2), принадлежащие прямой ℓ;

2) провести ось вращения i(i1,i2) перпендикулярно П1 через точку В(В1В2) прямой ℓ(ℓ1, ℓ2);

3) при вращении прямой ℓ вокруг оси i точка В прямой останется неподвижной, так как принадлежит оси, а точка А будет вращаться по правилам, рассмотренным выше;

4) угол поворота α° точки А и ее горизонтальной проекции А1 определяется между положением проекций А1В1 и А’1В’1.

Когда прямая ℓ займет положение параллельное П2, ее горизонтальная проекция ℓ’1 расположится перпендикулярно линиям связи.

Для определения положения проекции А’2 необходимо из А’1 провести вертикальную линию связи до пересечения с горизонтальной линией связи из фронтальной проекции А2. Пересечение этих двух линий связи определит новое положение проекции точки А’2.

Соединив между собой новые проекции точек, получим В’2А’2 натуральную величину прямой ℓ, что является решением первой задачи на преобразование комплексного чертежа.

Для преобразования прямой ℓ общего положения в горизонталь, ее необходимо вращать около оси i, перпендикулярной П2 и проходящей через какую-либо точку прямой (рис. 5.17).

Рис. 5.17. Преобразование прямой линии общего положения
в горизонтальную (горизонталь) прямую

Для преобразования, заданной прямой, необходимо:

1) выбрать две точки А(А1А2) и В(В1В2), принадлежащие прямой ℓ;

2) провести ось вращения i (i1,i2) перпендикулярно П2 через точку В(В1В2) прямой ℓ(ℓ1, ℓ2);

3) при вращении прямой ℓ вокруг оси i точка В прямой остаётся неподвижной, так как принадлежит оси, и новое её положение будет с ней совпадать В2 ≡ В’2, а точка А будет вращаться по правилам, рассмотренным выше;

4) угол поворота β° точки А и ее фронтальной проекции А2 определяется между положением проекций А2В2 и А’2В’2, когда прямая ℓ займет положение, параллельное П1, ее фронтальная проекция ℓ’2 расположится перпендикулярно линиям связи.

Для определения положения проекции А’1 необходимо из А’2 провести вертикальную линию связи до пересечения с горизонтальной линией связи из А1. Пересечение этих двух линий связи определит новое положение проекции точки А’1. Соединив между собой новые проекции точек, получим В’1А’1 натуральную величину прямой ℓ, что является решением первой задачи на преобразование комплексного чертежа.

3адача 2. Преобразовать линию общего положения в проецирующую прямую (рис.5.18).

Рис. 5.18. Преобразование прямой линии общего положения
в горизонтально проецирующую

Вторую задачу на преобразование комплексного чертежа решать без решения первой задачи нельзя. Поэтому, если дана прямая общего положения, то для решения второй задачи необходимо выполнить два последовательных преобразования: вначале преобразовать ее в линию уровня (см. первую задачу), а затем линию уровня преобразовать в проецирующую (рис. 5.18, 5.19). Если линия уровня является фронталью, то ее можно преобразовать в горизонтально проецирующую прямую вращением около оси i’ перпендикулярной П2 (рис. 5.18). В рассматриваемом случае необходимо ось вращения провести через точку А’’. Во фронтальной плоскости проекций А’2 ≡ i’2 ≡ А’’2. Для определения нового положения точки В необходимо В’2 повернуть вокруг i’2 до положения В’’2. Соединив между собой новые проекции точек, получим В’’2А’’2, прямую перпендикулярную горизонтальной плоскости проекций (горизонтально проецирующую), что является решением второй задачи на преобразование комплексного чертежа.

Читайте также:  Способы получения гражданства условия

Рис. 5.19. Преобразование прямой общего положения
во фронтально-проецирующую

Если линия уровня является горизонталью, то ее можно преобразовать во фронтально проецирующую прямую вращением около оси i’ перпендикулярной П1 (рис. 5.19). В рассматриваемом случае необходимо ось вращения провести через точку А’’.

В горизонтальной плоскости проекций А’1 ≡ i’1 ≡ А’’1. Для определения нового положения точки В необходимо В’1 повернуть вокруг i’1 до положения В’’1. Соединив между собой новые проекции точек, получим В’’1А’’1, прямую перпендикулярную фронтальной плоскости проекций (фронтально проецирующую), что является решением второй задачи на преобразование комплексного чертежа.

Задача 3. Преобразовать чертеж так, чтобы плоскость общего положения Σ(ΔАВС) после поворота стала проецирующей (рис. 5.20).

Рис. 5.20. Преобразование плоскости Σ(ΔАВС) во фронтально-проецирующую

При решении таких задач необходимо знать, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную к другой плоскости. Таким образом, если какую-либо прямую, принадлежащую плоскости Г, преобразовать в проецирующую, то плоскость Г тоже станет проецирующей.

Для того чтобы плоскость преобразовать во фронтально проецирующую, ее необходимо вращать вокруг оси i ⊥ П1, а в качестве вспомогательной линии уровня взять горизонталь. Для решения этой задачи можно использовать плоскость треугольника ΔАВС. Если плоскость Г(ΔАВС) вращать вокруг оси i ⊥ П1, то горизонталь (h), принадлежащая плоскости, может быть повернута в положение, перпендикулярное плоскости П2, при этом плоскость Г станет фронтально проецирующей (рис. 5.20).

Построения новой горизонтальной проекции А’1В’1С’1 треугольника ΔАВС в плоскости нужно провести горизонталь (А111), которую одним поворотом сделать проецирующей прямой. За ось вращения i можно принять горизонтально проецирующую прямую, которую для удобства решения, провести через точку (А), принадлежащую плоскости. В горизонтальной плоскости проекций П1 проекции исходного и нового положения точки А и оси вращения совпадают А1 ≡ А’1 ≡ i1. При повороте точек В1 и С1 вокруг i1 величина их угла поворота равна величине угла поворота горизонтальной проекции горизонтали h1. В результате поворота треугольник ΔА’В’С’ оказывается перпендикулярным П2 и поэтому его фронтальная проекция В’2А2С’2 вырождается в прямую линию, построение которой необходимо выполнить по правилам, рассмотренным выше.

Фронтальные проекции начального и нового положений точки А совпадают А2 ≡ А’2. Положения точек В2 и С2 определяются в пересечении вертикальных и горизонтальных линий связи соответствующих точек. Для определения положения В’2 необходимо из В’1провести вертикальную, а из В2 горизонтальную линии связи. Для определения положения С’2 необходимо из С’1 провести вертикальную, а из С2 горизонтальную линии связи. Новые положения точек плоскости Г во фронтальной плоскости проекций П2 находятся на одной прямой, что подтверждает условие перпендикулярности Г ⊥ П2 и решение третьей задачи на преобразование комплексного чертежа.

Для того чтобы плоскость Σ преобразовать в горизонтально проецирующую, её необходимо вращать вокруг оси i ⊥ П2, а в качестве вспомогательной линии уровня взять фронталь (рис. 5.21).

В качестве плоскости Σ можно использовать треугольник ΔDEK.

Если плоскость Σ (DEK) вращать вокруг оси i ⊥ П2, то фронталь (f), принадлежащая плоскости, может быть повернута в положение, перпендикулярное плоскости П1, при этом плоскость Σ станет горизонтально проецирующей (рис. 5.21).

Рис. 5.21. Преобразование плоскости Σ (ΔАВС) в горизонтально- проецирующую

Для построения новой горизонтальной проекции D’2E’2K’2 треугольника ΔDEK в плоскости нужно провести фронталь, которую одним поворотом сделать проецирующей прямой. За ось вращения i можно принять фронтально проецирующую прямую, которую для удобства решения, провести через точку (D), принадлежащую плоскости.

Во фронтальной плоскости проекций П2 проекции исходного и нового положения точки D и оси вращения совпадают D2 ≡ D’2 ≡ i2. При повороте точек E2 и K2 вокруг i2 величина их угла поворота равна величине угла поворота фронтальной проекции фронтали f2.

В результате поворота треугольник D’E’K’ оказывается перпендикулярным П1 и поэтому его горизонтальная проекция D’1 E11 K’2 вырождается в прямую линию, построение которой необходимо выполнить по правилам, рассмотренным выше.

Горизонтальные проекции начального и нового положений точки D совпадают D1 ≡ D’1. Положения точек E1 и K1 определяются в пересечении вертикальных и горизонтальных линий связи соответствующих точек. Для определения положения E’1 необходимо из E1 провести горизонтальную, а из E’2 вертикальную линии связи. Для определения положения К’1 необходимо из К1 провести горизонтальную, а из К’2 вертикальную линии связи. Новые положения точек плоскости Σ в горизонтальной плоскости проекций П1 расположены на одной прямой, что подтверждает условие перпендикулярности Σ ⊥ П1и решение третьей задачи на преобразование комплексного чертежа.

Источник

Оцените статью
Разные способы