Натуральная величина четырехугольника способом замены плоскостей проекции

Определение натуральной величины фигуры сечения

Нередко практический интерес представляет задача определения натуральной величины фигуры сечения.

Определим натуральную величину сечения (четырехугольника), полученного на рис. 3.11. Так как четырехугольник 1234 занимает общее положение в пространстве, то его натуральную величину можно определить двумя переменами плоскостей проекций, сначала построив плоскость, перпендикулярную четырехугольнику 1234, а затем – параллельную ему. Чтобы не загромождать чертеж (рис. 3.11), вынесем построения на отдельный рисунок 3.12. Для построения плоскости, перпендикулярной плоскости четырехугольника 1234, необходимо начертить одну из главных линий, например, горизонталь. Ее фронтальная проекция h2 должна быть параллельна оси П1/П2. По точкам пересечения 2 и 4 с четырехугольником 1234 находим и горизонтальную проекцию h1 горизонтали.

Новая ось П4/П1, разделяющая П1 и новую плоскость П4, должна быть перпендикулярна h1. Затем получаем проекцию 14243444 в виде прямой. И наконец, вычертив вторую новую ось П5/П4, параллельно 1434, построим проекцию 15253545 четырехугольника в плоскости П5. Это и есть натуральная величина четырехугольника 1234. Сечение заштрихуем под углом 45° к горизонтальной прямой.

Чаще приходится решать более простую задачу – определение натуральной величины сечения многогранника плоскостью частного положения. В этом случае достаточно сделать всего одну замену плоскостей проекций. Рассмотрим на примере сечения пирамиды горизонтально–проецирующей плоскостью S (рис 3.13). Пусть задана горизонтальная проекция S1. Необходимо найти линию пересечения плоскости S с пирамидой и определить натуральную величину сечения. Таким образом, задача разбивается на две части: сначала надо построить сечение в плоскостях П1и П2, а затем определить его натуральную величину.

Рис. 3.13. Построение линии пересечения и определение натуральной величины сечения пирамиды плоскостью.

Чтобы решить первую часть задачи нужно найти все точки пересечения плоскости S с ребрами пирамиды и соединить их отрезками прямой. Горизонтальная проекция S1 пересекает ребра пирамиды в точках 11, 21, 31, 41 (рис. 3.13, а). По линиям связи находим их фронтальные проекции 12, 22, 32, 42 на фронтальных проекциях соответствующих ребер. Соединяя найденные точки, получаем линию пересечения 12223242 заданной плоскости с пирамидой. Отрезок 1242 этой линии будет невидимым, так как он лежит на невидимой грани A2S2C2. Плоская фигура, ограниченная полученной линией (на рис. 5.9, а заштрихована), и является сечением пирамиды плоскостью. В нашем примере это четырехугольник 1234.

Для определения натуральной величины четырехугольника 1234 способом замены плоскостей проекций не обязательно строить новую ось параллельно S1 (или 11214131), ввиду ограниченности площади чертежа. Достаточно соблюдать основные принципы построения. Начертим новую ось на свободном поле чертежа. Перенесем на нее точки 11,21,41,31, не меняя расстояния между ними. Проведем через них перпендикуляры к оси. Затем отложим на построенных перпендикулярах отрезки, равные расстояниям от оси П2/П1, которую считаем расположенной на основании А2В2С2 пирамиды, до соответствующих проекций 12, 22, 42, 32. Соединив указанные точки, получим натуральную величину сечения пирамиды заданной плоскостью S (рис. 3.13, б).

Как видим, сечение в натуральную величину отличается от 12223242 лишь тем, что оно вытянуто вдоль S1.

Источник

58. Способ замены плоскостей проекций

Сущность этого способа заключается в том, что заменяют одну из плоскостей на новую плоскость, расположенную под любым углом к ней, но перпендикулярную к незаменяемой плоскости проекции. Новая плоскость должна быть выбрана так, чтобы по отношению к ней геометрическая фигура занимала положение, обеспечивающее получение проекций, в наибольшей степени удовлетворяющих требованиям условий решаемой задачи. Для решения одних задач достаточно заменить одну плоскость, но если это решение не обеспечивает требуемого расположения геометрической фигуры, можно провести замену двух плоскостей.

Читайте также:  Морфологический способ выражения грамматического значения

Применение этого способа характеризуется тем, что пространственное положение заданных элементов остается неизменным, а изменяется система плоскостей проекций, на которых строятся новые изображения геометрических образов. Дополнительные плоскости проекций вводятся таким образом, чтобы на них интересующие нас элементы изображались в удобном для конкретной задачи положений.

Рассмотрим решение четырех исходных задач способом замены плоскостей проекций.

1. Преобразовать чертеж прямой общего положения так, чтобы относительно новой плоскости проекций прямая общего положения заняла положение прямой уровня.

Новую проекцию прямой, отвечающей поставленной задаче, можно построить на новой плоскости проекций П4, расположив ее параллельно самой прямой и перпендикулярно одной из основных плоскостей проекций, т. е. от системы плоскостей П1_|_П2 перейти к системе П4 _|_ П1 или П4 _|_ П2. На чертеже новая ось проекций должна быть параллельна одной из основных проекций прямой. На рис. 108 построено изображение прямой l (А, В) общего положения в системе плоскостей П1 _|_ П4, причем П4 || l. Новые линии связи A1A4 и В1В4проведены

перпендикулярно новой оси —П14 параллельной горизонтальной проекции l1.

Новая проекция прямой дает истинную величину А4В4отрезка АВ (см. § 11) и позволяет определить наклон прямой к горизонтальной плоскости проекций (а = L1П1). Угол наклона прямой к фронтальной плоскости проекций (b = L1П2) можно определить, построив изображение прямой на другой дополнительной плоскости П4_|_П2 (рис. 109).

2. Преобразовать чертеж прямой уровня так, чтобы относительно новой плоскости проекций она заняла проецирующее положение.

Чтобы на новой плоскости проекций изображение прямой было точкой (см. § 10), новую плоскость проекций нужно расположить перпендикулярно данной прямой уровня. Горизонталь будет иметь своей проекцией точку на плоскости П4_|_ П1. (рис. 110), а фронталь f— на П4_|_ П2

Если требуется построить вырожденную в точку проекцию прямой общего положения, то для преобразования чертежа потребуется произвести две последовательные замены плоскостей проекций. На рис. 111 исходный чертеж прямой l (А,В) преобразован следующим образом: сначала построено изображение прямой на плоскости П4_|_ П2, расположенной параллельно самой прямой l. В системе плоскостей П2_|_ П4, прямая заняла положение линии l уровня 2А4 _|_П21;

П4 _|_П5, причем вторая новая плоскость проекций П5 перпендикулярна самой прямой l. Так как точки А и В прямой находятся на одинаковом расстоянии от плоскости П4, то на плоскости П5 получаем изображение прямой в виде точки 5 = B5 = l5).

3. Преобразовать чертеж плоскости общего положения так, чтобы относительно новой плоскости она заняла проецирующее положение.

Для решения этой задачи новую плоскость проекций нужно расположить перпендикулярно данной плоскости общего положения и перпендикулярно одной из основных плоскостей проекций. Это возможно сделать, если учесть, что направление ортогонального проецирования на новую плоскость проекций должно совпадать с направлением соответствующих линий уровня данной плоскости общего положения. Тогда все линии этого уровня на новой плоскости проекций изобразятся точками, которые и дадут «вырожденную» в прямую проекцию плоскости (см. § 47).

Читайте также:  Способы кровли односкатной крыши

На рис. 112 дано построение нового изображения плоскости 0 (ABC) в системе плоскостей П4 _|_П1. Для этого в плоскости 0 построена горизонталь h(A, 1), и новая плоскость проекций П4 расположена перпендикулярно горизонтали h. Графическое решение третьей исходной задачи приводят к построению изображения плоскости в виде прямой линии, угол наклона которой к новой оси проекции П14, определяет угол наклона а плоскости Q(ABC) к горизонтальной плоскости проекций (а = Q ^ П1).

Построив изображение плоскости общего положения в системе П2 _|_П4, (П4 расположить перпендикулярно фронтали плоскости),

можно определить угол наклона Р этой плоскости к фронтальной плоскости проекций.

4. Преобразовать чертеж проецирующей плоскости так, чтобы относительно новой плоскости она заняла положение плоскости уровня.

Решение этой задачи позволяет определить величину плоских фигур.

Новую плоскость проекций нужно расположить параллельно заданной плоскости. Если исходное положение плоскости было фронтально проецирующим, то новое изображение строят в системе и П2 _|_П4, а если горизонтально проецирующим, то в системе П1 _|_П4. Новая ось проекций будет расположена параллельно вырожденной проекции проецирующей плоскости (см. § 47). На рис. 113 построена новая проекция А4В4С4горизонтально проецирующей плоскости Sum (ABC) на плоскости П4 _|_П1

Если в исходном положении плоскость занимает общее положение, а нужно получить изображение ее как плоскости уровня, то прибегают к двойной замене плоскостей проекций, решая последовательно задачу 3; а затем задачу 4. При первой замене плоскость становится проецирующей, а при второй — плоскостью уровня (рис. 114).

В плоскости А(DEF) проведена горизонталь h (D — 1). По отношению к горизонтали проведена первая ось П1 / П4 _|_h1. Вторая новая ось

проекций параллельна вырожденной проекции плоскости, а новые линии связи — перпендикулярны вырожденной проекции плоскости. Расстояния для построения проекций точек на плоскости П5 нужно замерить на плоскости П1от оси П1 / П2и откладывать по новым линиям связи от новой оси П45. Проекция D5E5F5треугольника DEF конгруэнтна самому треугольнику ABC.

С применением способа замены плоскостей можно решать ряд других задач как самостоятельных, так и отдельных частей задач, включающих большой объем графических решений.

Источник

Метод замены плоскостей проекций

Для решения целого ряда задач начертательной геометрии наиболее рациональным является метод замены плоскостей проекций. Например, с его помощью можно определить натуральную величину плоской фигуры, расстояние между параллельными прямыми, опорные точки пересечения поверхностей.

Замена одной плоскости проекции

Сущность метода заключается в замене одной из плоскостей проекций на дополнительную плоскость, выбранную так, чтобы в новой системе плоскостей решение поставленной задачи значительно упрощалось. Положение фигур в пространстве при этом не меняется.

Рассмотрим на примере точек A и B, как осуществляются построения на комплексном чертеже. Изначально точка A находится в системе плоскостей П1, П2. Введем дополнительную горизонтальную пл. П4. Она будет перпендикулярна фронтальной плоскости проекций П2 и пересечет её по оси x1. Эту ось необходимо провести на комплексном чертеже с учётом цели построения. Здесь мы расположили её произвольно.

Читайте также:  10 способов повысить эффективность работы сотрудников

В новой системе плоскостей положение точки A» не изменится. Чтобы найти точку A’1, которая является проекцией т. А на плоскость П4, проведем из A» перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Ax1А’1, равный отрезку AxA’.

Данные построения основаны на равенстве ординат точек A’ и А’1. Действительно, в системе плоскостей П1, П2 и в системе П2, П4 точка A удалена от фронтальной плоскости проекций П2 на одно и то же расстояние.

Теперь осуществим перевод точки B в новую систему плоскостей П1, П4 (рис. ниже). Для этого введем произвольную фронтальную пл. П4, которая будет перпендикулярна горизонтальной плоскости проекций П1 и пересечет её по оси x1.

В системе П1, П4 положение точки B’ останется неизменным. Чтобы найти точку B»1, проведем из B’ перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Bx11 равный отрезку BxB». Описанные построения основаны на равенстве аппликат точек B» и B»1.

Замена двух плоскостей проекций

Иногда для решения поставленной задачи требуется замена двух плоскостей проекций (рис. ниже). Пусть A’ и A» – исходные проекции точки A, находящейся в системе пл. П1, П2. Введем первую дополнительную плоскость П4 и определим новую горизонтальную проекцию A’1 точки A, как это было описано ранее.

Для осуществления второй замены плоскости проекций будем рассматривать систему пл. П2, П4 в качестве исходной. Введем новую фронтальную плоскость П5 перпендикулярно горизонтальной пл. П4. Для этого на произвольном месте чертежа проведем ось x2 = П4 ∩ П5. Из точки A’1, положение которой останется неизменным, восстановим перпендикуляр к оси x2. На нем от точки Ax2 отложим отрезок Ax21 равный отрезку A»Ax1.

Использование метода замены при решении задач

Владея методом замены применительно к одной точке, можно построить дополнительные проекции любых фигур, поскольку они представляют собой множество точек. На рисунке ниже показан перевод отрезка AB в частное положение. Новая плоскость П4 проведена параллельно AB, поэтому отрезок проецируется на неё в натуральную величину.

На следующем рисунке показана плоскость общего положения α, заданная следами. Переведем её в новую систему плоскостей П1, П4 так, чтобы α занимала проецирующее положение. Для этого перпендикулярно горизонтальному следу h0α введем дополнительную фронтальную плоскость П4.

Новый фронтальный след f0α1 строится по двум точкам. Одна из них, Xα1, лежит на пересечении h0α с осью x1. Дополнительно возьмем точку N, принадлежащую α, и укажем её фронтальную проекцию N»1 на плоскости П4.

Определение расстояния между параллельными плоскостями

Параллельные плоскости α и β расположены так, как показано на рисунке. Чтобы найти расстояние между ними, необходимо из произвольной точки A, взятой на пл. α, опустить перпендикуляр AB на пл. β и определить его настоящую длину.

Для уменьшения количества геометрических построений α и β предварительно переводятся в проецирующее положение с помощью метода замены плоскостей проекций. Вспомогательная точка M используется для определения направления следов f0β1 и f0α1, параллельных друг другу.

Источник

Оцените статью
Разные способы