Наиболее перспективным способом получения уксусной кислоты

Какие методы получения уксусной кислоты вам известны и которые из них являются более перспективными и почему? Подтвердите это уравнениями соответствующих реакций.

Уксусную кислоту можно получать следующими способами:

1) Из метана, являющегося основным компонентом природного газа, получают ацетилен:

Ацетилен в присутствии сульфата ртути (II) присоединяет воду, образуется уксусный альдегид (реакция Кучерова):

При окислении уксусного альдегида образуется уксусная кислота:

2) При гидратации этилена, являющегося побочным продуктом крекинга нефти, получают этиловый спирт:

При окислении этилового спирта получают уксусную кислоту:

3) Уксусную кислоту можно получить при окислении бутана в присутствии катализатора:

Наиболее перспективным является последний метод, так как бутан является компонентом природного газа и попутных нефтяных газов, а уксусная кислота получается в одну стадию.

Решебник по химии за 11 класс (Г.Е. Рудзитис, Ф.Г. Фельдман, 2000 год),
задача №12
к главе «Глава XIV. Обобщение знаний по курсу органической химии».

Источник

Технологические аспекты получения уксусной кислоты

Авторы: С.В. Афанасьев (Тольяттинский госуниверситет), В.Л. Гартман (ООО «НИАП-КАТАЛИЗАТОР»), Н.А. Мораш (Тольяттинский госуниверситет).

Опубликовано в журнале Химическая техника №9/2018

Современные крупнотоннажные производства уксусной кислоты являются достаточно высокорентабельным и включают несколько технологических стадий:

  • очистку природного газа от сернистых соединений;
  • пароуглекислотную конверсию природного газа;
  • очистку конвертируемого газа от СО2 раствором моноэтаноламина;
  • компрессию природного газа, диоксида углерода, конвертируемого газа и оксида углерода;
  • выделение оксида углерода криогенным методом [1].

Это делает оправданным создание совмещенных производств по выпуску уксусной кислоты на базе существующих агрегатов аммиака..

Мощность установки СН3СООН в 150 000 т в год считается оптимальной. Это объясняется тем, что основное оборудование синтеза и ректификации изготавливается из дорогостоящих сплавов циркония и никеля, имеющих высокую стойкость против коррозии и обеспечивающих эффективную работу при высоких температурах и давлениях.

Процесс конверсии с целью получения оксида углерода осуществляется в печах риформинга под давлением 1,8 МПа. В качестве сырья используется природный газ и диоксид углерода. Для достижения требуемой производительности печей риформинга оправдано использование тонкостеннных реакционных труб с повышенным ресурсом работы [2].

Получаемый синтез-газ охлаждается в рекуперационных теплообменниках криогенной установки до температуры 283 К. После удаления следов Н2О и СО2 в адсорбере синтез-газ поступает в холодильный блок, где происходит его дальнейшее охлаждение и частичное ожижение. В дальнейшем осуществляется обработка потоков в специальной колонне, где СО вымывается жидким метаном, а в башенном охладителе протекает отпарка растворенного Н2.

Для захолаживания потоков до нужных параметров используется турбодетандер. Полученный сжиженный СО поступает в отделение синтеза уксусной кислоты, а водород выдается в производство аммиака.

Для производства ледяной уксусной кислоты используется процесс карбонилирования под низким давлением с использованием метанола и оксида углерода в качестве сырья.

Основные его стадии рассмотрены в работах [2–4].

Реакция протекает при температуре 200…270°С и давлении 20…70 МПа в присутствии карбонилов железа, кобальта или никеля. В качестве промоторов используют галогенсодержащие соединения.

Согласно многочисленным исследованиям, каталитическая активность карбонилов металлов уменьшается в следующим образом:

Ni > Co > Fe, а эффективность промоторов снижается от йода к хлору

Синтез уксусной кислоты из метанола впервые был разработан и осуществлен в промышленном масштабе немецкой фирмой BASF. Процесс проводят в присутствии кобальтового катализатора и йодсодержащего промотора при 200 °С и 70 МПа. Каталитически активным соединением является комплекс HCo(CO)4, образующийся при протекании следующих реакций:

Йодоводород, реагируя с метанолом, образует йодметан:

Далее в результате окислительного присоединения HCo(CO)4 к йодметану образуется метилкобальткарбонил:

Последующее присоединение CO и гидролиз комплекса приводят к образованию уксусной кислоты и регенерации катализатора:

Принципиальная технологическая схема процесса получения уксусной кислоты из метанола фирмы BASF приведена на рисунке.

Раствор катализатора в метаноле поступает сверху в колонну синтеза 1, а снизу подается оксид углерода. Синтез осуществляется при 250°С и 70 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем в сепаратор низкого давления 3. Непрореагировавший оксид углерода из сепаратора 2 снова возвращается в процесс.

Технологическая схема синтеза уксусной кислоты карбонилированием метанола:
1 – колонна синтеза; 2, 3 – сепараторы высокого и низкого давлений; 4…6 – ректификационные колонны; I – метанол + + катализатор; II – оксид углерода; III – продукты синтеза; IV – отработанный газ; V – раствор катализатора; VI – метанол; VII – уксусная кислота-сырец; VIII – товарная уксусная кислота; IX – кубовый остаток на сжигание [4] Жидкие продукты далее отделяются в колонне 4 от катализатора и подаются в ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза 1. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подается на ректификацию в колонну 6.

Кубовый остаток колонны 6 периодически отбирается на сжигание. Выход уксусной кислоты составляет 90 % в расчете на метанол.

Жесткие условия проведения процесса являются существенным недостатком, ограничивающим его широкое промышленное применение. Поэтому выявленная фирмой Monsanto способность родиевых соединений катализировать реакцию карбонилирования метанола при атмосферном давлении и температуре 100 °С имела важное практическое значение.

Синтез уксусной кислоты с использованием родиевого катализатора в промышленных условиях проводят при температуре

180 °С, давлении 3…4 МПа. Концентрация катализатора поддерживается на уровне 0,001 моля в расчете на 1 т реакционной смеси. Предшест-венником катализатора может служить почти любое соединение родия, но обычно используют RhCl3⋅3Н2О, а в качестве промотора – HI.

Как металлический родий, так и йодистый водород достаточно дороги, поэтому с экономической точки зрения необходимо организовать практически полный их возврат в цикл. Кроме того, в связи с высокой коррозионной активностью системы Rh/HI большая часть оборудования должна быть изготовлена из дорогих сплавов.

Механизм карбонилирования метанола в присутствии родиевого катализатора представлен ниже:

Каталитически активным соединением выступает[Rh(CO)2I2]–, к которому присоединяется йодметан. Анионный комплекс одновалентного родия обладает сильными нуклеофильными свойствами, и эта стадия протекает с необычайно высокой скоростью. Образующееся метильное производное трехвалентного родия (I) нестабильно и быстро изомеризуется в продукт (II). Последний, реагируя с CO, образует лабильный комплекс (III), который подвергается восстановительному элиминированию с регенерацией катализатора.

Каталитический цикл завершается реакциями, в результате протекания которых образуются уксусная кислота и регенерируется промотор – йодистый метил:

Читайте также:  Способы для повышения лактации

Таким образом, родиевая технология получения уксусной кислоты аналогична кобальтовой. Принципиальное отличие заключается в том, что при карбонилировании метанола с использованием комплексов родия применяется оборудование низкого давления. Процесс осуществляется при пониженных температурах [2].

Можно выделить два основных брутто-процесса:

  • карбонилирование метанола окисью углерода с образованием уксусной кислоты;
  • реакцию водогазовой конверсии, при которой из оксида углерода и воды образуются диоксид углерода и водород.

Обе реакционные системы приведены ниже.

оксид метанол уксусная углерода кислота

2) Реакция парогазовой конверсии является основной побочной реакцией:

Наряду с этим образуется незначительное количество пропионовой кислоты:

этанол оксид пропионовая углерода кислота

Важная роль отведена участку приготовления/регенерации катализатора и синтеза промотора:

  • синтез свежих растворов катализатора для подачи в основную реакционную систему установки;
  • приготовление йодистого метила;
  • удаление продуктов коррозии из каталитической системы.

Йодид родия смешивают с водным раствором уксусной кислоты в осадителе-растворителе катализатора. Эту смесь подогревают и перемешивают, продувая через сосуд СО. После окончания приготовления катализатора раствор перекачивают в емкость.

Йодистый метил, играющий роль промотора, готовится в две стадии в отдельном реакторе. Первая стадия включает смешивание элементного йода с раствором йодистого водорода и воды, нагревание в присутствии родиевого катализатора и продувку СО.

Вторая стадия начинается с понижения температуры, уменьшения давления и введения метанола. Метанол быстро реагирует с НI. В процессе получения летучего МеI повышается давление в реакторе промотора.

Йодистый метил дистиллируется в верхнем погоне, конденсируется в конденсаторе промотора и охлаждается в переохладителе промотора. Продукт хранится в емкости для хранения промотора. Все отработанные газы направляются в испарительную емкость в зоне синтеза.

Регенерация катализатора предусматривает удаление продуктов коррозии из его раствора. Для решения этой задачи из испарительной емкости стадии синтеза он подается в осадитель-растворитель катализатора, где родий осаждается, а продукты коррозии остаются в растворе. Затем отстоявшуюся жидкость, содержащую продукты коррозии, сливают из осадителя-растворителя в концентратор остатка катализатора. Родий, оставшийся осажденным в осадителе-растворителе, повторно растворяют и перекачивают в катализаторную емкость или возвращают в испаритель в зоне реакции.

Многие из перечисленных катализаторов и материалов производятся в Российской Федерации и используются в отрасли. Определенный практический интерес представляют хлорированные отходы феррониобиевого производства, обладающие достаточно высокой каталитической активностью при карбонилировании метанола [7].

В условиях мирового роста производства аммиака становится актуальной задача создания на базе существующих в России аммиачных производств установок по выпуску уксусной кислоты, являющейся базовым продуктом многочисленных нефтехимических предприятий.

Источник

Курсовая работа: Производство уксусной кислоты

1.1 Теоретические сведения об уксусной кислоте

1.2 Применение уксусной кислоты

1.3 Основные способы получения уксусной кислоты

1.3.1 Получение уксусной кислоты окислением ацетальдегида

1.3.2 Получение уксусной кислоты окислением н-бутана

1.3.3 Производство уксусной кислоты окислением н-бутенов

1.3.4 Производство уксусной кислоты окислением парафинов С4-С8 в кислоты

1.3.5 Производство уксусной кислоты из метанола и оксида углерода

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Химизм процесса

2.2 Описание технологической схемы

2.3 Технико-технологические расчёты

2.3.1 Материальный баланс реактора и стадии синтеза уксусной кислоты

Уксусная кислота — первая из органических кислот, которая стала известна человеку. Впервые она была получена И.Глаубером в 1648 г. и в концентрированном виде путем вымораживания ее водных растворов и разложением ацетата кальция серной кислотой Г.Шталем в 1666—1667 гг. Элементный состав уксусной кислоты был установлен Я.Берцелиусом в 1814 г. До начала XIX века уксусную кислоту производили исключительно из природного сырья: пирогенетической обработкой древесины и окислительным уксуснокислым брожением пищевого этанола. В настоящее время производство уксусной кислоты из лесохимического сырья имеет второстепенное значение, хотя масштабы его измеряются сотнями тысяч тонн. В этом методе уксусную кислоту выделяют из сконденсированной части парообразных продуктов термической обработки древесины (жижки), получаемой в процессе углежжения. Выход кислоты составляет около 20 кг на 1 м3 древесины.

Биохимический метод производства уксусной кислоты используют только для производства натурального пищевого уксуса.

Появление синтетических методов производства уксусной кислоты связано с разработкой и промышленной реализацией реакции получения ацетальдегида по Кучерову. В1910—1911 гг. патентуется способ производства уксусной кислоты окислением ацетальдегида, а в годы первой мировой войны в Германии и Канаде по этому методу было организовано промышленное производство. С некоторыми технологическими изменениями этот метод сохранил свое значение и в течение более пятидесяти лет является одним из основных.

Уксусная кислота была единственной, которую знали древние греки.Отсюда и ее название: «оксос» — кислое, кислый вкус. Уксусная кислота это простейший вид органических кислот, которые являются неотъемлемой частью растительных и животных жиров. В небольших концентрациях она присутствует в продуктах питания и напитках и участвует в метаболических процессах при созревании фруктов. Уксусная кислота часто встречается в растениях, в выделениях животных. Соли и эфиры уксусной кислоты называются ацетатами.Уксусная кислота — слабая (диссоциирует в водном растворе только частично). Тем не менее, поскольку кислотная среда подавляет жизнедеятельность микроорганизмов, уксусную кислоту используют при консервировании пищевых продуктов, например, в составе маринадов.Получают уксусную кислоту окислением ацетальдегида и другими методами, пищевую уксусную кислоту уксуснокислым брожением этанола. Применяют для получения лекарственных и душистых веществ, как растворитель (например, в производстве ацетата целлюлозы), в виде столового уксуса при изготовлении приправ, маринадов, консервов. Уксусная кислота участвует во многих процессах обмена веществ в живых организмах. Это одна из летучих кислот, присутствующая почти во всех продуктах питания, кислая на вкус и главная составляющая уксуса. Строение уксусной кислоты заинтересовало химиков со времени открытия Дюма трихлоруксусной кислоты, так как этим открытием был нанесен удар господствовавшей тогда электрохимической теории Берцелиуса. Последний, распределяя элементы на электроположительные и электроотрицательные, не признавал возможности замещения в органических веществах, без глубокого изменения их химических свойств, водорода (элемента электроположительного) хлором (элементом электроотрицательным), а между тем по наблюдениям Дюма («Comptes rendus» Парижской академии, 1839) оказалось, что «введение хлора на место водорода не изменяет совершенно внешних свойств молекулы почему Дюма и задается вопросом «покоятся ли электрохимические воззрения и представления о полярности, приписываемой молекулам (атомам) простых тел, на столь ясных фактах, чтобы их можно было считать предметами безусловной веры; если же их должно рассматривать как гипотезы, то подходят ли эти гипотезы к фактам? Должно признать, продолжает он, что дело обстоит иначе.Берцелиусу пришлось допустить возможность замещения водорода хлором без изменения химической функции первоначального тела, в котором происходить замещение. Не останавливаясь на приложении его воззрений к другим соединениям, переходим к работам Кольбе, который для уксусной кислоты, а затем и для других предельных одноосновных кислот нашел ряд фактов, гармонировавших со взглядами Берцелиуса (Жерара). Исходной точкой для работ Кольбе послужило изучение кристаллического вещества, состава CCl4 SO2 , полученного ранее Берцелиусом и Марсэ при действии царской водки на CS2 и образовавшегося у Кольбе при действии на CS2 влажного хлора. При действии света и хлора на C2 Cl4 , находившийся под водою, Кольбе получил на ряду с гексахлорэтаном и трихлоруксусную кислоту и выразил превращение таким уравнением: (Так как С2 Сl4 может быть получен из CCl4 при пропускании его через накаленную) трубку, а ССl4 образуется при действии, при нагревании, Cl2 на CS2 то реакция Кольбе была первым по времени синтезом уксусной кислоты из элементов. Работами Кольбе строение уксусной кислоты, а вместе с тем и всех других органических кислот было окончательно выяснено и роль последующих химиков свелась только к делению — в силу теоретических соображений и авторитета Жерара, формул Кольбе пополам и к переведению их на язык структурных воззрений, благодаря чему формула C2 H6 .C2 O4 H2 превратилась в CH3 CO(OH).

Мировое производство уксусной кислоты составляет в настоящее время свыше 3,5 млн. т в год, в нашей стране в 1980 г. было произведено 250 тыс. т. Основная масса уксусной кислоты производится из ацетальдегида, окислением бутановой и бензиновой фракций.

Первая установка по производству синтетической уксусной кислоты каталитическим окислением ацетальдегида была пущена на Чернореченском химическом заводе в 1932 г., а в 1948 г. было организовано ее промышленное производство. К 60-м годам уксусная кислота производилась также пиролизом ацетона через кетен, окислением узких фракций бензина, а также выделением из продуктов окисления твердого парафина. В результате развития синтетических методов производства уксусной кислоты удельный вес их вырос с 50% в 1963 г. до 70% в 1965 г. и до 90% в 1970 г. За эти же годы общий объем производства уксусной кислоты в стране вырос в три раза.

В 1963 г. были введены в строй новые предприятия по совместному производству уксусной кислоты и уксусного ангидрида каталитическим окислением ацетальдегида в жидкой фазе и к 1965 г. производство уксусной кислоты этим методом составляло уже 17% от общего объема ее производства в стране. В эти же годы было освоено в промышленном масштабе производство уксусной кислоты карбонилированием метанола.

1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Теоретические сведения об уксусной кислоте

Карбоновые кислоты — органические соединения, содержащие одну или несколько карбоксильных групп –СООН, связанных с углеводородным радикалом. Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга: кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризации связи О–Н.Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.С увеличением молекулярной массы растворимость кислот в воде уменьшается.Карбоновые кислоты проявляют высокую реакционную способность. Они вступают в реакции с различными веществами и образуют разнообразные соединения, среди которых большое значение имеют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.

Уксусная кислота (этановая кислота) представляет бесцветную жидкость с резким запахом, с температурой кипения 118,1°С, температурой плавления 16,75°С и плотностью 1,05 т/м3. Безводная, так называемая «ледяная» уксусная кислота образует за счет водородных связей димер циклического строения.

Критическая температура составляет 321,6°С. Уксусная кислота смешивается во всех отношениях с этанолом, диэтиловым эфиром, бензолом и другими органическими растворителями и с водой. Растворяет некоторые неорганические и органические вещества, например, серу, фосфор, ацетаты целлюлозы. С воздухом уксусная кислота образует взрывчатые смеси с пределами воспламенения от 3,3 до 22,0% об. Температура вспышки равна 34°С, температура самовоспламенения 354°С.

Уксусная кислота слабая. Константа ее диссоциации 1,75*10 -5 . Образует многочисленные растворимые в воде соли (ацетаты) и этерифицируется спиртами с получением сложных эфиров. Уксусная кислота обладает высокой коррозионной активностью по отношению ко многим металлам, особенно в парах и при температуре кипения, что необходимо учитывать при выборе материалов для аппаратуры. В ледяной кислоте стойки как на холоду, так и при температуре кипения, алюминий, кремнистый и хромистый чугуны, некоторые сорта нержавеющей стали, но разрушается медь. Техническая уксусная кислота обладает большей коррозионной активностью, которая усиливается в контакте с воздухом. Из неметаллических материалов стойки по отношению к уксусной кислоте специальные сорта керамики и эмали, кислотоупорные цементы и бетоны и некоторые виды полимерных материалов (полихлорвиниловые и фенолальдегидные пластмассы). Ингибитор коррозии в растворах уксусной кислоты — перманганат калия.

В парах уксусная кислота обладает раздражающим действием на дыхательные пути, ПДК для нее составляет 5 мг/м3.

Синтетическая пищевая уксусная кислота – легковоспламеняющаяся жидкость, по степени воздействия на организм относится к веществам 3-го класса опасности. При работе с уксусной кислотой следует применять индивидуальные средства защиты (фильтрующие противогазы). Первая помощь при ожогах — обильное промывание водой.Синтетическую пищевую уксусную кислоту заливают в чистые железнодорожные цистерны, автоцистерны с внутренней поверхностью из нержавеющей стали, в контейнеры, емкости и бочки из нержавеющей стали вместимостью до 275 дм 3 , а также в стеклянные бутыли и полиэтиленовые бочки вместимостью до 50 дм 3 . Полимерная тара пригодна для залива и хранения уксусной кислоты в течение одного месяца. Синтетическую пищевую уксусную кислоту хранят в герметичных резервуарах из нержавеющей стали. Контейнеры, емкости, бочки, бутыли и полиэтиленовые фляги хранят в складских помещениях или под навесом. Недопускается совместное хранение с сильными окислителями (азотная кислота, серная кислота, перманганат калия и др.).Транспортируется в ж/д цистернах, изготовленных из нержавеющей стали марки 12Х18H10Т или 10Х17H13М2Т, с верхним сливом. Физические свойства уксусной кислоты Таблица 1

Название: Производство уксусной кислоты
Раздел: Рефераты по химии
Тип: курсовая работа Добавлен 19:46:12 18 декабря 2010 Похожие работы
Просмотров: 15641 Комментариев: 21 Оценило: 8 человек Средний балл: 4.6 Оценка: 5 Скачать
1. Внешний вид Бесцветная, прозрачная жидкость без механических примесей
2. Растворимость в воде Полная, раствор прозрачный
3. Массовая доля уксусной кислоты, %, не менее 99,5
4. Массовая доля уксусного альдегида, %, не более 0,004
5. Массовая доля муравьиной кислоты, %, не более 0,05
6. Массовая доля сульфатов (SO4), %, не более 0,0003
7. Массовая доля хлоридов (Cl),%, не более 0,0004
8. Массовая доля тяжелых металлов осаждаемых сероводородом (Pb), %, не более 0,0004
9. Массовая доля железа (Fe), %, не более 0,0004
10. Массовая доля нелетучего остатка, %, не более 0,004
11. Устойчивость окраски раствора марганцовокислого калия, мин, не менее 60
12. Массовая доля веществ, окисляемых двухромовокислым калием, cm3 раствора тиосульфата натрия, концентрация с (Na2 SO3 *5H2 O) = 0,1 моль/дм3 (0,1H), не более 5,0

1.2 Применение уксусной кислоты Уксусную кислоту применяют для получения лекарственных и душистых веществ, как растворитель (например, в производстве ацетата целлюлозы), в виде столового уксуса при изготовлении приправ, маринадов, консервов.Водный раствор уксусной кислоты используют в качестве вкусового и консервирующего средства (приправа к пище, маринование грибов, овощей).В состав уксуса входят такие кислоты, как яблочная, молочная, аскорбиновая, уксусная.Яблочный уксус ( 4% уксусной кислоты )Яблочный уксус содержит 20 важнейших минеральных веществ и микроэлементов, а также уксусную, пропионовую, молочную и лимонную кислоты, целый ряд ферментов и аминокислот, ценные балластные вещества, такие, как поташ, пектин. Яблочный уксус широко применяется при приготовлении различных блюд и консервировании. Он прекрасно сочетается со всевозможными салатами, как из свежих овощей, так и мясными и рыбными. В нем можно мариновать мясо, огурцы, капусту, каперсы, портулак, а также трюфели. Однако, на Западе яблочный уксус известен больше своими лечебными свойствами. Он применяется при повышенном кровяном давлении, мигренях, астме, головной боли, алкоголизме, головокружении, артрите, болезнях почек, высокой температуре, ожогах, пролежнях и др.Здоровым людям рекомендуется каждый день употреблять полезный и освежающий напиток: в стакане воды размешать ложку меда и добавить 1 ложку яблочного уксуса. Желающим похудеть, рекомендуем каждый раз во время еды выпивать стакан несладкой воды с двумя ложками яблочного уксуса.Уксус широко используется в домашнем консервировании для приготовления маринадов различной крепости. В народной медицине уксус используется как неспецифическое жаропонижающее средство (путем протирания кожи раствором воды и уксуса в пропорции 3:1), а также при головных болях методом примочек. Распространено применение уксуса при укусах насекомых посредством компрессов.Известно применение спиртового уксуса в косметологии. А именно для придания мягкости и блеска волосам после химической завивки и перманентной окраски. Для этого волосы рекомендуется ополаскивать теплой водой с добавлением спиртового уксуса (на 1 литр воды — 3-4 ложки уксуса).Уксус виноградный ( 4% уксусной кислоты )Виноградный уксус широко используется ведущими поварами не только Словении, но и всего мира. В Словении его традиционно используют при приготовлении различных овощных и сезонных салатов (2-3 ст. ложки на салатницу), т.к. он придает неповторимый и изысканный вкус блюду. Также виноградный уксус прекрасно сочетается с различными рыбными салатами и блюдами из морских продуктов. При приготовлении шашлыков из различных сортов мяса, но особенно из свинины, виноградный уксус просто незаменим.Уксусная кислота применяется также для производства лекарственных средств. Таблетки Аспирина (ЭС) содержат активный ингредиент ацетилсалициловую кислоту, которая представляет собой уксусный эфир салициловой кислоты. Ацетилсалициловая кислота производится путём нагревания салициловой кислоты с безводной уксусной кислотой в присутствии небольшого количества серной кислоты (в качестве катализатора).При нагревании с гидроксидом натрия (NaOH) в водном растворе ацетилсалициловая кислота гидролизуется до салицилата натрия и ацетата натрия. При закислении среды салициловая кислота выпадает в осадок и может быть идентифицирована по температуре плавления (156-1600С). Другим методом идентификации салициловой кислоты, образующейся при гидролизе, является окрашивание её раствора в тёмно-фиолетовый цвет при добавлении хлорида железа (FeCl3). Уксусная кислота, присутствующая в фильтрате, превращается при нагревании с этанолом и серной кислотой в этоксиэтанол, который можно легко распознать по его характерному запаху. Кроме того, ацетилсалициловая кислота может быть идентифицирована при помощи различных хроматографических методов. Ацетилсалициловая кислота кристаллизуется с образованием бесцветных моноклинных многогранников или игл, немного кислых на вкус. Они стабильны в сухом воздухе, однако во влажной среде постепенно гидролизуются до салициловой кислоты и уксусной кислоты (Leeson и Mattocks, 1958; Stempel,1961). Чистое вещество представляет собой белый кристаллический порошок, почти не обладающий запахом. Запах уксусной кислоты свидетельствует о том, что вещество начало гидролизоваться. Ацетилсалициловая кислота подвергается эстерификации под действием щелочных гидроксидов, щелочных бикарбонатов, а также в кипящей воде.Ацетилсалициловая кислота оказывает противовоспалительное, жаропонижающее, а также болеутоляющее действие, и ее широко применяют при лихорадочных состояниях, головной боли, невралгиях и др. и в качестве противоревматического средства.Уксусная кислота используется в и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров), в производстве негорючих пленок, парфюмерных продуктов, растворителей, при синтезе красителей, лекарственных веществ, например, аспирина. Соли уксусной кислоты используют для борьбы с вредителями растений.

1.3 Основные способы получения уксусной кислоты

1.3.1 Получение уксусной кислоты окислением ацетальдегида

Процесс получения уксусной кислоты окислением ацетальдегида разработан фирмой Shawinigan (США). Окисление проводится кислородом в колоннах, футерованных алюминием, при 50—70°С и давлении до 0,7 МПа. В качестве растворителя используется уксусная кислота или ее водный раствор. Повышенное давление способствует поддержанию необходимой концентрации альдегида в жидкой фазе н увеличению надежности работы конденсационной системы. В качестве катализатора используется ацетат марганца. Окислительная колонна в нижней части снабжена перфорированной перегородкой для равномерного распределения кислорода по ее сечению. Процесс окисления протекает через стадию образования надуксусной кислоты, и катализатор играет активную роль в предотвращении ее накопления в значительных количествах.

Основными побочными продуктами окисления ацетальдегида являются ме-тилацетат, формальдегид, муравьиная кислота, ацетон, диацетил, этилиденди-ацетат. Это требует тщательной очистки товарного продукта от примесей.

В случае окисления ацетальдегида с использованием сложных катализаторов Со—Сu, Мn—Сu и в присутствии водоотводящих агентов (диизопропиловый эфир, этилацетат и т. д.) одновременно с уксусной кислотой образуется уксусный ангидрид.

Окисление ацетальдегида молекулярным кислородом представляет гомогенную каталитическую реакцию, протекающую в жидкой фазе и выражаемую общим уравнением:

Реакция протекает по цепному механизму через стадию образования надуксусной кислоты (НУК):

Которая, являясь сильным окислителем, окисляет ацетальдегид до уксусного ангидрида:

Источник

Читайте также:  Найди длину ломаной разными способами
Оцените статью
Разные способы