- Капиллярный контроль – простой и надёжный способ обнаружения трещин и раковин
- Преимущества и недостатки капиллярного контроля
- Методы капиллярного контроля
- Порядок проведения
- Аппаратура и материалы для цветной дефектоскопии
- Сообщество специалистов по капиллярному методу контроля
- Способы подготовки объекта к контролю
Капиллярный контроль – простой и надёжный способ обнаружения трещин и раковин
В капиллярном контроле (контроле проникающими веществами, сокращённо – ПВК) всё построено на проникающей способности специальных жидкостей. Заполняя поверхностные дефектов, они оставляют чёткий индикаторный рисунок из полос, извилин, точек или расплывчатых пятен. Метод особенно эффективно выявляет поры, заусенцы, трещины, раковины, межкристаллитную коррозию, риски, шлаковые включения, царапины и пр. При соблюдении инструкций, отражённых в РД 13-06-2006, ГОСТ 18442-80 и иной документации, становится возможным выявление даже мелких дефектов. Попутно можно определить их точное расположение и оценить протяжённость. Считается, что ПВК хуже справляется с обнаружением сквозных дефектов — для их выявления лучше подходит течеискание (ПВТ). Оба методы объединены в один вид НК — контроль проникающими веществами.
Как метод дефектоскопии ручной и механизированный капиллярный контроль чрезвычайно универсален. Ограничений по форме и габаритам объектов нет. Чёрные и цветные металлы, неферромагнитные сплавы, керамические изделия, пластмассы и даже стекло – всё это может быть проверено при помощи данного вида НК. В технических заданиях на проведение технического освидетельствования и экспертизы промышленной безопасности трубопроводов и резервуаров он часто упоминается в качестве дополнительного. Именно этот метод предпочитают в случаях, когда магнитопорошковая дефектоскопия объектов из ферромагнитных сплавов не способна обеспечить требуемую чувствительность. К тому же далеко не все объекты в эксплуатации можно намагничивать.
В зависимости от минимального размера дефектов, поддающихся выявлению, капиллярный контроль может соответствовать одному из следующих классов чувствительности:
- I (в пределах 1 мкм);
- II (от 1 до 10 мкм);
- III (больше 10, но меньше 100 мкм);
- IV (больше 100, но в пределах 500 мкм).
Дополнительно предусмотрен ненормируемый технологический класс.
При определении чувствительности учитывается также тип освещения (УФ-облучённость или дополнительная подсветка с люминесцентными лампами либо лампами накаливания).
Преимущества и недостатки капиллярного контроля
Слабые стороны у этого метода тоже есть и заключаются они прежде всего в том, что:
- индикаторные жидкости не являются на 100% безвредными. Без средств индивидуальной защиты органов дыхания, органов зрения и слизистых оболочек работать нельзя. В противном случае – заболевания дыхательных путей и не только вам обеспечены. Да, производители материалов для цветного метода дефектоскопии постоянно работают над тем, чтобы уменьшить токсичность испарений, минимизировать запах и пр. Однако даже топовые производители пока не достигли идеального результата, а у бюджетных марок всё ещё хуже;
- контроль возможен только тогда, когда есть беспрепятственный доступ к поверхности;
- нужно постоянно поддерживать запасы расходников. Каким бы экономичным не был расход, материалы нужно вовремя подвозить, а на отдалённых объектах (к примеру, нефтегазоконденсатных месторождениях) с этим могут быть трудности;
- выявлению подлежат только поверхностные и сквозные полости с глубиной распространения, превышающей ширину раскрытия;
- технология очень требовательна к качеству подготовки поверхности. Нужно тщательным образом избавиться от брызг металла, нагара, шлака, ржавчины, старых ЛКМ, жирных разводов, масла, пыли и иных загрязнений. Шероховатость поверхности не должна превышать Ra 3,2 мкм (Rz 20 мкм);
- капиллярный метод контроля требователен к температуре исследуемой поверхности и окружающего воздуха. Допустимые значения указываются в руководящих документах на контроль. В документе РД 13-06-2006, например, указан диапазон от -40 до +40 ˚С, хотя на практике, конечно, при таких низких температурах контроль едва ли возможен.
Помещения, в которых проводится ПВК, должны быть подключены к холодному и горячему водоснабжению. Обязательно наличие приточно-вытяжной вентиляции (с 3-кратным воздухообменом) и вытяжными зондами над рабочими зонами. Необходимо оснастить его ваннами, инструментами для нанесения материалов, очистки и сушки объектов. Понадобятся также поддоны для сбора воды. Если испытаниям подвергаются крупногабаритные изделия, обязательно наличие грузоподъёмных механизмов, подмостей, передвижных вышек и пр. Дополнительно могут понадобиться УФ-светильники, воздушные и инфракрасные обогреватели и т.д.
Даже к стенам помещения есть свои требования – для отделки нужно использовать легко моющиеся покрытия.
Методы капиллярного контроля
Согласно традиционной классификации они подразделяются на несколько групп:
- основные (собственно ПВК) и комбинированные (ПВК плюс дополнительный метод неразрушающего контроля). Примеры из последней категории – капиллярно-магнитный, капиллярно-индукционный, капиллярно-электростатический, капиллярно-радиационный поглощения, капиллярно-радиационный излучения. Справедливости ради надо признать, что комбинированные методы применяются крайне редко;
- методы проникающих растворов и фильтрующихся суспензий. Первая разновидность капиллярного контроля – классический ПВК с пенетрантом и проявителем, во втором случае к пенетранту добавляется нерастворимый порошок, которому свойствен повышенный цветовой контраст и люминесценция. Дополнительного проявления не нужно. Отфильтрованные частицы скапливаются у устья несплошности, образуя индикаторный след. Данный способ обладает меньшей чувствительностью;
- на яркостные (ахроматические), цветные (хроматические), люминесцентные и люминесцентно-цветные. Разберём их подробнее.
Яркостный капиллярный контроль считается самым простым. Его также называют меловым или керасино-меловым пробоем. Один из старейших способов дефектоскопии, где его уже много десятилетий применяют для шеек колёсных пар и других деталей подвижного состава железнодорожного транспорта. В качестве проявителя используется мел либо каолин, в качестве пенетранта – керосин. Дёшево и сердито. И очень эффективно для поиска трещин и пор.
Цветной метод базируется на использовании ярко окрашенных жидкостей. Белый проявитель, красный пенетрант – такой контраст легко и быстро «считывается» дефектоскопистом. Подходит для испытаний даже при обычном дневном свете.
Люминесцентный метод – это, если можно так выразиться, цветной метод «на максималках». Проводится в затемнённом помещении с применением ультрафиолетового освещения с длиной волны 365 нм. Индикаторная жидкость содержит люминофор, который на тёмном фоне светится сильным жёлто-зелёным цветом. Данному способу свойственна повышенная чувствительность: люминесцентный капиллярный контроль сварных соединений, околошовной зоны и основного металла способен выявлять дефекты с раскрытием всего 0,1 мкм и более.
Наконец, люминесцентно-цветной метод – самый чувствительный из всех. Предполагает регистрацию контраста между цветным индикаторным рисунком и люминесцентным. Как в видимом спектре, так и длинноволновом УФ-излучении. Сочетание источников освещение помогает регистрировать мельчайшие несплошности.
Порядок проведения
Цветная дефектоскопия сварных швов, околошовной зоны и основного металла выполняется с учётом критериев допустимости дефектов, отражённых в руководящей документации. Трактовать результаты можно по индикаторному рисунку и по фактическим параметрам трещин, раковин или пор, чётко обозначившихся после удаления всех рабочих жидкостей. В целом, основанием для положительной оценки является отсутствие протяжённых следов удлинённого вида. Что касается одиночных несплошностей, то тут всё, повторимся, зависит от инструкции.
Так, в техкарте на капиллярный контроль могут быть предписаны следующие способы заполнения полостей индикаторным веществом:
- собственно капиллярный. Пенетрант проникает самопроизвольно. Его можно распылять, наносить кистью, можно наполнить им бак и полностью погрузить в него объект;
- компрессионный. Нагнетается избыточное давление, под действием чего жидкость заполняет полости;
- вакуумный. Давление в полости опускается ниже атмосферного, и жидкость проникает в неё быстрее;
- ультразвуковой. Всю «работу делают» акустические волны;
- деформационный. Объект подвергается воздействию упругих звуковых колебаний либо находится под статической нагрузкой. Это способствует увеличению ширины раскрытия дефекта, и пенетрант легче проникает в него.
Ещё один «подводный камень» при контроле капиллярным методом: дефектоскопист должен знать, как отличить индикаторный рисунок на месте реальных дефектов от ложных следов. Этим «страдают» участки, на которых:
- повреждена микроструктура, что приводит к возникновению рисок, заусенцев, забоин, сколов окисной плёнки, коррозии и эрозии;
- изменён микрорельеф объекта и его и форма – в силу специфики технологий производства. Так, на литых деталях могут остаться характерные складки. На сварных швах – наплывы. На металле в целом – следы от режущего либо шлифовального инструмента;
- поверхность загрязнена. Капиллярный метод контроля сварных соединений очень требователен к качеству очистки. Важно следить, чтобы на поверхности не было пересохшего пенетранта, волокон от ветоши, жировых разводов, пятен от перчаток;
- имела место слабая прессовая просадка.
Если возникают сомнения, для более внимательного изучения индикаторного следа разрешено использовать лупу с 2–7-кратным увеличением. Если и это не помогает, рекомендовано проведение повторного контроля.
Аппаратура и материалы для цветной дефектоскопии
Для полноценного проведения контроля могут понадобиться следующие технические средства и принадлежности:
- контрольные образцы (обязательно с паспортом и отметкой о метрологическом обслуживании) для проверки индикаторных жидкостей;
- ультрафиолетовые фонари или светильники (для работы с люминесцентными материалами);
- светильники отражённого либо рассеянного светораспределения (для капиллярного метода контроля запрещена прямая подсветка);
- лупы (с увеличением 6–10 крат) и иные оптические приборы (1,25–30 крат) для осмотра дефектов;
- эталоны шероховатости – для оценки поверхности;
- пульверизаторы, краскораспылители и компрессоры (для пневматических агрегатов);
- кисти;
- салфетки, ветошь, марля, губки и пр.
Особую категорию составляют линии для автоматизированного капиллярного контроля деталей. Это блочно-модульные стационарные установки, состоящие из нескольких баков, смотровой кабины, источников дополнительного освещения и пр.
Из необходимых аксессуаров также отметим СИЗ – очки, перчатки, респираторы и пр.
Но главное для ПВК – это, конечно же, дефектоскопические материалы, а именно:
- пенетрант – индикаторная жидкость, заполняющая устье дефекта. Различаются по проникающей способности, вязкости и поверхностному натяжению;
- проявитель – жидкость, которая образует на поверхности равномерное матовое покрытие белого цвета. Пенетрант при этом не вымывается из полости дефектов, а потому особенно чётко виден на светлом фоне;
- очиститель – жидкость для очистки объекта и удаления лишнего объёма индикаторной жидкости.
Самые популярные материалы для капиллярного контроля выпускаются под брендами Magnaflux, Sherwin, Helling, MR Chemie, Karl Deutsch и др. Поставляются в аэрозольных баллончиках (стандартный объём – 400 мл), канистрах и даже бочках. Пенетрант, проявитель и очиститель можно приобрести по отдельности, а можно – целым набором. К примеру, в комплекте Spotcheck предусмотрены все необходимые баллончики, а также безворсовая ткань и сумка.
Если не приобретать готовые материалы, а приготавливать их самостоятельно, то делать это можно только в специально оборудованном помещении с вытяжкой.
Помимо уже упомянутых расходников, для капиллярного метода контроля сварных швов по-прежнему востребованы такие проверенные временем материалы, как керосин, ацетон, этиловый спирт, каолин, ксилол и пр. Так, если в отапливаемых помещениях для очистки поверхности можно использовать воду, то при отрицательных температурах не обойтись без спирта.
Исчерпывающий перечень расходников доступен в приложении №5 к методическим рекомендациям РД 13-06-2006.
Сообщество специалистов по капиллярному методу контроля
На форуме «Дефектоскопист.ру» зарегистрированы тысячи специалистов ПВК (ЦД), аттестованных и сертифицированных по СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика). В специальном разделе на форуме доступны десятки обсуждения по теоретическим и практическим аспектам данного вида неразрушающего контроля. Ему также посвящена отдельная категория в электронной библиотеке «Архиус», где собрана вся актуальная нормативная документация. Если у вас есть какой-либо вопрос, вы можете поискать необходимую информацию на нашем сайте – либо создать новую тему и изложить свою проблему. Коллеги обязательно подскажут, помогут, направят на путь истинный.
Чтобы быть успешным специалистом капиллярного контроля, зарегистрируйтесь на форуме «Дефектоскопист.ру» и следите за обновлениями!
Источник
Способы подготовки объекта к контролю
Читайте также:
|