Нахождение площадей фигур разными способами

Площадь фигур

Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Для вычисления площади квадрата нужно умножить его длину на саму себя.

SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см 2

Формулу площади квадрата, зная определение степени, можно записать следующим образом:

Площадь прямоугольника

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

SABCD = AB · BC

SABCD = 3 · 7 = 21 см 2

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

SABCE = AB · BC
SEFKL = 10 · 3 = 30 м 2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м 2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м 2

Ответ: S = 65 м 2 — площадь огородного участка.

Свойство ниже может вам пригодиться при решении задач на площадь.

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

АС — диагональ прямоугольника ABCD . Найдём площадь треугольников ABC и ACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см 2

S ABC = SABCD : 2

S ABC = 20 : 2 = 10 см 2

S ABC = S ACD = 10 см 2

Источник

Площади геометрических фигур: список формул, описание, примеры

Содержание:

Для решения практических задач иногда приходится вычислять площади геометрических фигур. Они, например, нужны при измерениях земельных участков, поверхностей при проведении ремонтных и строительных работ. Рассмотрим, что такое площадь геометрической фигуры, по каким формулам она определяется в разных ситуациях.

Площади всех фигур в геометрии

Площадью называют численную характеристику поверхности, которая показывает сколько квадратов с размером 1 × 1 занимает объект на плоскости. Изменяется в квадратных единицах – метрах, сантиметрах, километрах и т. д.

Для нарисованного по клеточкам четырёхугольника с прямыми углами это делается простым подсчётом с перемножением полученных значений. Для квадрата на примере это 100 см2: 10 × 10 см.

В математике насчитывается менее десятка фигур – замкнутых множеств, сформированных точками, площадь которых можно вычислить. Общий принцип расчётов сформирован благодаря интегральному счислению.

Читайте также:  Что происходит с компьютерными данными при их удалении с диска обычным способом

Формулы площадей фигур по геометрии

Если известен диаметр – четверти его квадрата на π.

S = \pi \frac <4>, потому что d = \frac <1><2>r, d^2 = \frac <1><4>r^2 .

Кольцо круга: разница между площадями кольца и круга.

Четырёхугольники

Квадрат: размеры сторон перемножаются.

Также площадь вычисляется как половина квадрата диагонали.

Прямоугольник: произведение соседних сторон – длины на ширину.

Параллелограмм: умножение длины стороны на опущенную к ней высоту.

Вторая формула применяется, когда известны длины сторон с углом между ними – произведение сторон на sin угла, под которым они пересекаются.

Ромб – параллелограмм с равными сторонами. Если известна сторона, площадь ромба вычисляется как произведение sin угла между сторонами на их длину в квадрате.

Если в задании даны длины диагоналей, площадь определяется как половина их произведения.

При наличии одной диагонали (полудиагонали) и стороны, неизвестные данные вычисляются по теореме Пифагора.

Трапеция: полусумма длин верхнего и нижнего оснований на высоту геометрической фигуры.

Когда даны средняя линия и высота, площадь находят путём перемножения их значений.

Выпуклый четырёхугольник: половина длины диагоналей, перемноженная на sin угла, который они образуют.

Вписанный в окружность 4-угольник: площадь вычисляется как корень квадратный из произведения разности периметра на длину каждой стороны.

В случае с прямоугольником, квадратом формула упрощается.

Треугольники

Половины стороны на проведённую к ней высоту.

Пары любых сторон на sin образуемого ими угла:

Квадрата полупериметра геометрической фигуры на тангенсы половин углов.

S = p 2 * tgα/2 * tgβ/2 * tgγ/2.

Корню квадратному произведения разницы полупериметров и сторон.

Квадрата длины стороны на синусы смежных углов, разделённому на удвоенный синус третьего, противоположного ей угла.

При известной высоте: отношению её произведения на синус угла, откуда та опущена, к двойному произведению синусов остальных углов.

Для прямоугольного 3-угольника, по сути, половины прямоугольника, применимо выражение:

Источник

Нахождение площадей фигур разными способами

Математика – один из моих любимых школьных предметов. А самое сложное и одновременно самое интересное в математике — решение задач. Задачи в учебнике и сборниках попадаются самые разные и способов решения каждой задачи можно придумать несколько. Но один вид задач, как мне кажется, не похож на другие. Это задачи на клетчатой бумаге. Они кажутся необычными, более занимательными.

А встречаются ли такие задачи старшеклассникам? Я решила посмотреть открытый банк заданий ОГЭ и ЕГЭ по математике, посетить сайты по подготовке выпускников 9 и 11 классов к экзаменам. Оказалось, что задачи на нахождение площадей многоугольников на клетчатой бумаге достаются на экзаменах почти каждому выпускнику.

Вывод прост: уметь решать задачи на сетке (в т.ч. на нахождение площадей) разными способами нужно уметь каждому школьнику. В этом я вижу актуальность моей работы, а ее новизну в том, что один из рассматриваемых способов решения не разбирается в школьных учебниках математики.

Читайте также:  Как организовать людей способы воздействия

Цель исследования – изучить способы вычисления площадей фигур на клетчатой бумаге, и выбрать самый эффективный.

Для достижения данной цели необходимо выполнить следующие задачи:

  1. Подобрать литературу по данной теме.
  2. Изучить способы нахождения площадей фигур на клетчатой бумаге.
  3. Провести эксперимент.
  4. Сделать выводы.

Предмет исследования: площади фигур на клетчатой бумаге.

Объект исследования: фигуры на клетчатой бумаге.

Гипотеза: самым эффективным способом вычисления площадей фигур на клетчатой бумаге является – формула Пика.

Глава 1. Способы нахождения площадей фигур на клетчатой бумаге. 1.1Площадь фигуры как сумма площадей ее частей

Задача №1. Найти площадь фигуры на рисунке 1 (клетки размером 1х1 см).

Разбиваем данную фигуру на четыре части, и находим площадь каждой части. Затем складываем все части, и получаем площадь данной фигуры.

S1=2*3= 6 см2; S2= *2*1=1 см2;

S3= *2*1= 1 см2; S4= *3*1= 1,5 см2

Рис. 1. Ответ: 9,5 см2

Задача №2. Найти площадь фигуры на рисунке 2 (клетки размером 1х1 см).

Разбиваем данную фигуру на четыре части, и находим площадь каждой части. Затем складываем все части, и получаем площадь данной фигуры.

S1= *1*5= 2,5 см2; S2=4*2=8 см2;

S3= *1*2= 1 см2; S4= *2*4= 4 см2;

S= 2,5+8+1+4= 15,5 см2.

Задача №3. Найти площадь фигуры на рисунке 3 (клетки размером 1х1 см).

Разбиваем данную фигуру на три части, и находим площадь каждой части. Затем складываем все части, и получаем площадь данной фигуры.

Рис. 3. Ответ: 35 см2.

1.2. Площадь фигуры как часть площади прямоугольника

Задача № 4. Найти площадь фигуры на рисунке 4 (клетки размером 1х1 см).

Опишем около данной фигуры прямоугольник. Из площади прямоугольника (в данном случае квадрата) вычтем площади полученных фигур:

S=Sпр – S1 – S2 – S3

Sпр=5*5=25 см2; S1= *5*4=10 см2;

S2= *5*2=5 см2; S3= *1*3=1,5 см2;

Задача №.5. Найти площадь фигуры на рисунке 5 (клетки размером 1х1см).

Опишем около данной фигуры прямоугольник. Из площади прямоугольника (в данном случае квадрата) вычтем площади полученных фигур:

S=Sпр – S1 – S2 – S3 – S4

Sпр=7*7= 49 см2; S1= *2*5=5 см2;

S2= *2*5=5 см2; S3= *2*5=5 см2;

S= 49-5-5-5-5= 29 см2

Задача №.6. Найти площадь фигуры на рисунке 6 (клетки размером 1х1см).

Опишем около данной фигуры прямоугольник. Из площади прямоугольника (в данном случае квадрата) вычтем площади полученных фигур:

S1= *3*1=1,5 см2; S2= *4*5=10 см2;

S= 25-1,5-10=13,5 см2.

1.3. Формула Пика

Георг Александр Пик – австрийский математик. Родился Георг Пик в еврейской семье. Его отец Адольф Йозеф Пик возглавлял частный институт. В шестнадцать лет Пик сдал выпускные экзамены и поступил в университет в Вене. Уже в следующем году Пик опубликовал свою первую работу по математике. После окончания университета в 1879 году он получил право преподавать математику и физику. В 1880 году Пик защитил докторскую диссертацию, а в 1881 году получил место ассистента на кафедре физики Пражского университета. В 1888 году он был назначен экстраординарным профессором математики, затем в 1892 году в Немецком университете в Праге был назначен ординарным профессором (полным профессором).

Читайте также:  Назовите какое мероприятие является способом защиты населения от поражающих факторов

В 1900 – 1901 годах занимал пост декана философского факультета.

После того как Пик вышел в отставку в 1927 году, он получил звание почётного профессора и вернулся в Вену – город, в котором он родился. Однако в 1938 году после аншлюса Австрии 12 марта он вернулся в Прагу. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Круг математических интересов Георга Пика был чрезвычайно широк: 67 его работ посвящены многим темам, таким как линейная алгебра, интегральное исчисление, функциональный анализ, геометрия и др. Но больше всего он известен своей теоремой о вычислении площади многоугольника, которая появилась в его восьмистраничной работе 1899 года.

Эта теорема оставалась незамеченной в течение некоторого времени после того, как Пик её опубликовал, однако в 1949 году польский математик Гуго Штейнгауз включил теорему (или как её ещё называют – формулу) в свой знаменитый «Математический калейдоскоп». С этого времени теорема Пика стала широко известна. В Германии формула Пика включена в школьные учебники.

Пусть В – число узлов решетки, расположенных строго внутри многоугольника, Г – число узлов решетки, расположенных на его границе, включая вершины, S – его площадь. Тогда справедлива следующая формула:

Это и есть формула Пика.

Задача №7. Вычислить площадь многоугольника на рисунке 7. Воспользуемся формулой Пика.

Подставив в формулы наши данные, получаем:

Рис.7. S=48 + – 1 = 51,5 см2 .

Задача №8. Вычислить площадь многоугольника на рисунке 8. Воспользуемся формулой Пика.

Подставив в формулы наши данные, получаем:

S=16 + – 1 = 19,5 см2 .

Задача № 9. Вычислить площадь многоугольника на рисунке 9. Воспользуемся формулой Пика.

Подставив в формулы наши данные, получаем

S=24 + – 1 = 19 см2 .

Глава 2. Проведение эксперимента

2.1. Результаты эксперимента

Изучив все способы нахождения площадей фигуры на клетчатой бумаге, мы решили провести эксперимент. Исследование проводилось в объединении «Знаю и считаю» Дворца творчества детей и молодежи, в котором я обучаюсь. Вместе с нашим педагогом, который также является моим научным руководителем, мы объяснили ребятам все способы вычисления площадей фигур. Затем, мы им раздали задания: по три задачи по каждому способу, и предложили решить их на время. Мы с моим научным руководителем засекали время, а ребята решали задачи.

В Таблице 1 представлены результаты каждого обучающегося по трем способам:

Время, затраченное на решение задач 1-м методом (мин)

Время, затраченное на решение задач 2-м методом

Время, затраченное на решение задач 3-м методом (Формула Пика)

Источник

Оцените статью
Разные способы