Назначение и способы наддува. (4 часа)
Назначение, виды наддува, особенности протекания рабочего цикла дизеля с наддувом. 2/2. стр. 150-154.
Увеличение массы воздуха при том же объёме цилиндра позволяет повысить цикловую подачу и получить большую работу цикла, чем в двигателе без наддува.
Наддув является средством форсирования двигателя по работе цикла.
Любой способ форсирования сокращает срок службы двигателя. Поэтому при внедрении наддува принимают меры к снижению тепловой напряженности деталей ЦПГ.
Охлаждению деталей ЦПГ способствует продувка цилиндра надувным воздухом в конце хода выпуска. Её можно осуществить в том случае, когда давление надувочного воздуха будет больше давления в выпускном коллекторе.
У многоцилиндрового двигателя необходима такая организация выпуска, чтобы к моменту закрытия выпускного клапана одного цилиндра в коллекторе отсутствовал импульс от выпуска из другого цилиндра. Исходя из этого двигатели с газотурбинным наддувом оборудуют несколькими выпускными коллекторами у шестицилиндровых – два у восьмицилиндровых четыре.
Цилиндры к коллекторам присоединяют с учётом необходимости обеспечения указанного промежутка между выпусками.
Для повышения эффективности продувки цилиндра поддувочным воздухом увеличиваются угол запаздывания закрытия выпускного и угол опережения открытия впускного клапанов, и в конечном счёте (тяга короче) – угол перекрытия клапанов, который у дизелей с поддувом бывает от 75 до 142 П.К.В.
Тепловая напряженность деталей ЦПГ снижается также при охлаждении поддувочного воздуха, для чего устанавливают воздухоохладители. Обычно температура воздуха снижается в охладителе не мене чем на 20ºС. В автомобильной и тракторной технике применяется промежуточный охладитель воздуха (интеркуллер) воздух.
Продувка цилиндра и охлаждение надувочного воздуха не только снижают тепловую напряженность, но и повышают мощность двигателя: в результате продувки почти полностью удаляются остаточные газы, а в следствие охлаждения увеличивается плотность воздуха и то и другое приводит к росту массы свежего заряда, что позволяет повысить цикловую подачу топлива.
Источник
3.10. Наддув дизелей
Наддувом называется способ повышения мощности двигателя при помощи подачи в рабочий цилиндр воздуха под давлением выше атмосферного для увеличения цикловой подачи топлива (цикловая подача топлива – это подача топлива за один цикл). Добавочная подача топлива является источником дополнительного подвода теплоты к рабочему телу в цилиндре, обеспечивающим повышение удельной эффективной работы цикла.
По сравнению со средним эффективным давлением ре у дизелей без наддува, его значения при наддуве повышаются у четырехтактных двигателей в 2–4 раза, у двухтактных – в 1,5–2,7 раза. Так как ре входит в формулу мощности, увеличение мощности при использовании наддува составит эти значения.
Наддув в зависимости от типа двигателя может осуществляться по разному – в зависимости от привода компрессора различают механический, газотурбинный и комбинированный наддув.
При механическом наддуве поршневой, ротативный или центробежный нагнетатель приводится в действие непосредственно от вала двигателя. Этот вид наддува в судовых ДВС в чистом виде не применяют, однако используют в комбинированном наддуве, когда для повышения давления воздуха используют энергию отработавших газов (газотурбинный наддув) и работу самого двигателя.
При газотурбинном наддуве сжатый воздух подается к цилиндрам двигателя специальным дополнительным механизмом – турбокомпрессором.
Турбокомпрессор представляет собой соединенные в одном корпусе центробежный компрессор и газовую турбину. Компрессор связан с двигателем только трубопроводом подачи воздуха к ресиверу, а турбина – трубопроводом подачи выхлопных газов от двигателя к сопловому аппарату (см. главу 4).
На рис. 29 приведена схема газотурбинного наддува четырехтакт-ного двигателя.
Воздух из окружающей среды всасывается компрессором4 через приемный патрубок 3, сжимается и подается через охладитель наддуво-чного воздуха 5 в ресивер 6, откуда поступает в цилиндр через впускной клапан 7 (как было отмечено ранее, охлаждение воздуха применяют с целью снижения теплонапряженности и дополнительного повышения мощности дизеля).
Рабочее колесо компрессора, насаженное на общий вал с ротором газовой турбины, приводится в движение газовой турбиной 1. Газовая турбина приводится во вращение отработавшими в цилиндрах газами, которые поступают к ней от выпускных клапанов двигателя 8 через выпускные патрубки и трубопровод 9 и отводятся через патрубок 2.
Мощность, развиваемая газовыми турбинами турбокомпрессоров судо-вых дизелей, составляет до 20% мощ-ности двигателя, поэтому дизеля с газотурбинным наддувом называют комбинированными турбопоршневыми двигателями. В газовой турбине утилизируется значительная часть остаточной энергии отработавших в ци-линдре газов, которая у двигателей без наддува уносится с газами в атмосферу.
При наддуве двухтактных дизелей, как правило, применяется комбинированный наддув с двухступенчатым сжатием воздуха. Обычно в качестве первой ступени сжатия используют турбокомпрессор, а в качестве второй ступени – подпоршневые полости цилиндров или приводной поршневой компрессор. Пример вариантов комбинированного наддува показан на рис. 30.
Из рисунка видно, что продукты сгорания через выхлопной клапан поступают в газовую турбину турбокомпрессора ТК. Газовая турбина имеет общий вал с компрессором, рабочее колесо которого всасывает воздух из машинно-котельного отделения. Далее лопатки компрессора разгоняют воздух, поступающий далее в расширяющийся канал улиткообразной формы, где за счет уменьшения скорости возрастает давление воздуха (на рисунке а видна именно компрессорная часть турбокомпрессора). Так как после сжатия температура воздуха повысилась, для увеличения плотности воздуха его охлаждают в холодильнике ОНВ.
Далее охлажденный воздух попадает в воздушный ресивер ВР, который через продувочные окна сообщается с цилиндром двигателя. При ходе поршня к НМТ его донышко выполняет роль поршневого насоса, сжимая воздух, находящийся в подпоршневой полости и воздушном ресивере. Наддув и продувка цилиндра начинается после того, как верхняя кромка поршня откроет продувочные окна.
Следует подчеркнуть, что необходимость в применении комбинированного наддува в двухтактных дизелях возникает по двум причинам. Во-первых, так как отработавшие продукты сгорания из цилиндра выталкивает не поршень (как в четырехтактных двигателях), а воздух, его расход по сравнению с четырехтактным двигателем будет повышенным. Во-вторых, так как отходящие продукты сгорания разбавлены воздухом, мощность газовой турбины оказывается недостаточной для подачи в цилиндры необходимой массы воздуха при необходимом давлении.
В заключение следует отметить, что в зависимости от способа подвода газов к турбине и принципа использования энергии газов системы наддува судовых дизелей делятся на изобарные и импульсные.
Первые применяют преимущественно в двухтактных и среднеоборотных четырехтактных дизелях. В этом случае газы подводятся к газовой турбине из выхлопного коллектора большого объема, где давление незначительно меняется относительно среднего давления.
В импульсных системах наддува подвод газов к турбине осуществляется через короткие выпускные патрубки небольшого сечения, что позволяет дополнительно использовать энергию импульса давления выхлопных газов. Эти системы наддува применяют преимущественно в четырехтактных и некоторых двухтактных дизелях.
Источник
Виды наддува дизелей
В зависимости от типа привода нагнетателей воздуха наддув судовых дизелей принято подразделять на механический, газотурбинный и комбинированный.
Рис. Компоновочные схемы дизельных двигателей с наддувом
а – механический наддув; б – газовый наддув с импульсной турбиной; в – комбинированный наддув; г – газовый наддув с изобарной турбиной; д – двухступенчатый комбинированный наддув; е – наддув с использованием подпоршневых полостей.
ГТ – газовая турбина; К – воздушный компрессор; ВО – воздухоохладитель; М — мультипликатор; ЭК – подкачивающий электрокомпрессор; В – забор воздуха из атмосферы; Г – выброс выхлопных газов.
В схемах наддува с механической связью (рис. а) компрессор приводится в действие непосредственно от коленчатого вала двигателя через мультипликатор. Основным недостатком схемы является то, что на привод компрессора затрачивается от 7 до 10% мощности, полученной в рабочих цилиндрах двигателя. Такая схема применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува.
Схема наддува с газовой связью (импульсная турбина) (рис. б). Продукты сгорания по коротким патрубкам направляются в импульсную газовую турбину. Недостатком по сравнению с механической схемой наддува является ухудшение пусковых качеств дизелей, так как в начальный момент пуска дизеля турбина не работает.
Схема наддува с комбинированной связью (рис. в). Турбоагрегат частично снимает мощность с коленчатого вала двигателя, а частично – с вала импульсной газовой турбины. На мощностях близких к номинальной , работа турбокомпрессора обеспечивается только за счет мощности, вырабатываемой газовой турбиной. Данная схема обеспечивает хорошие пусковые качества дизеля.
Схема с изобарным наддувом (рис. г). Отработавшие газы из цилиндров поступают в выпускной коллектор, где выравнивается поле скоростей и давлений. При работе на малых нагрузках турбокомпрессор не обеспечивает требуемый расход воздуха. На этих режимах дополнительно включаются в работу электроприводные компрессоры, специально установленные на дизеле.
Схема двухступенчатого комбинированного наддува (рис. д). Продукты сгорания от цилиндров дизеля сначала поступают на импульсную газовую турбину, а затем в выхлопной коллектор дизеля, где происходит выравнивание давления газов. Из выхлопного коллектора продукты сгорания поступают на лопатки изобарной газовой турбины. Такие схемы используют при высокой степени наддува.
Схема наддува с использованием подпоршневых полостей (рис. а). В малооборотных дизелях в качестве приводного компрессора нередко используют подпоршневые полости цилиндров, где дополнительно сжимается.
Источник
Наддув дизелей
На современных мощных четырехтактных и двухтактных дизелях применяется наддув для повышения ихмощности и тепловой экономичности. Сущность наддува состоит в том, что воздух в цилиндры дизеля не засасывается из атмосферы, а нагнетается турбокомпрессором или нагнетателем, приводимым от вала двигателя.
Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что одновременно позволяет также подавать в цилиндры и сжигать большее количество топлива, а следовательно, получать при тех же размерах цилиндров и той же частоте вращения вала дизеля большую мощность. Установлено, что мощность дизеля возрастает примерно пропорционально давлению наддувочного воздуха. Таким образом, наддув позволяет почти при тех же размерах и массе двигателя увеличить его мощность в 2-3 раза.
При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что в значительной степени уменьшает воздушный заряд в цилиндре. Поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры. Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3-4 % и снижение удельного расхода топлива примерно на 1,5-2 г/(кВт-ч).
Экономичность дизелей с наддувом повышается вследствие увеличения механического коэффициента полезного действия и дополнительного использования тепла отработавших газов.
Давления сжатия и сгорания в цилиндре также возрастают. Температура же горения и тепловая напряженность дизеля остаются почти неизменными.
Существуют три способа наддува дизелей: нагнетателем, имеющим привод от вала дизеля (механический наддув), газотурбинный и комбинированный.
Механический наддув. Нагнетатель 5 (рис. 13) приводится во вращение через редуктор 6 от коленчатого вала. Воздух засасывается нагнетателем из атмосферы и через впускной
Рис. 13. Схема наддува дизеля с механическимприводом воздушного нагнетателя: 1 — цилиндр дизеля; 2 — поршень; 3 — клапан выпускной; 4 — клапан впускной; 5 — нагнетатель центробежный, 6 — редукторклапан 4 нагнетается в цилиндр. Недостаток такого способа наддува состоит в том, что количество подаваемого в цилиндр воздуха зависит от частоты вращения вала дизеля, а не от нагрузки, т. е. подача воздуха в цилиндр при данной частоте вращения вала будет одинакова на холостом ходу и при полной нагрузке. Так осуществляется воздухоснабжение в дизеле 2Д100. Для правильной же организации рабочего процесса дизеля необходимо, чтобы под нагрузкой подавалось воздуха больше, чем на холостом ходу. Это особенно важно для тепловозных двигателей. Кроме того, на привод нагнетателя при этом способе наддува расходуется часть полезной мощности дизеля, поэтому экономичность двигателя повышается мало.
Газотурбинный наддув. В четырехтактном дизеле с газотурбинным наддувом (рис. 14) отработавшие газы, пройдя выпускной клапан 4, поступают на газовое колесо турбины 1 и, совершив работу, выбрасываются в атмосферу. На одном валу с турбиной находится крыльчатка центробежного нагнетателя 2, который забирает воздух из атмосферы, сжимает его до давления рк и через впускной клапан 3 нагнетает в цилиндр.
При газотурбинном наддуве количество воздуха, подаваемого в цилиндры, будет тем больше, чем больше внешняя нагрузка на дизель, так как в этом случае через турбину пройдет большее количество отработавших га-
Рис. 14. Схема дизеля с газотурбинным наддувом
1 — турбина газовая; 2 — нагнетатель центробежный 3 — клапан впускной; 5 — цилиндр; 6 — поршеньзов, имеющих более высокую температуру; частота вращения ее увеличится, а следовательно, возрастет и подача нагнетателя. Это свойство дизеля с газотурбинным наддувом для тепловозов особенно ценно, так как этим достигается «саморегулирование» дизеля. Кроме того, при газотурбинном наддуве благодаря дополнительному использованию тепла отработавших газов повышается коэффициент полезного действия двигателя. Газотурбинный наддув применен в четырехтактных тепловозных дизелях типов Д70, Д49, ПД1М, М756, КбЗЗКЮк.
Комбинированный наддув. Комбинированный (двухступенчатый) наддув (рис. 15) применяется в двухтактных дизелях в том случае, когда воздух необходимо сжать до сравнительно высокого давления (0,2-т-0,3) МПа. Одного нагнетателя 5, приводимого от газовой турбины, оказывается недостаточно для обеспечения дизеля воздухом требуемых параметров, особенно на пониженных нагрузках, так как температура выпускных газов перед турбиной у двухтактного дизеля ниже, чем у четырехтактного, вследствие интенсивной продувки цилиндров воздухом. Поэтому в двухтактных дизелях применяют вторую ступень сжатия воздуха в нагнетателе 7, который имеет механический привод (через редуктор 8) от вала двигателя. При сжатии в первой ступени (турбонагнетателе) воздух нагревается до высокой температуры (100- 150°С), что уменьшает воздушный за ряд цилиндра и, следовательно, мощность и экономичность дизеля. Чтобы избежать этого, после нагнетателя 5 воздух направляется в охладитель 6, где он охлаждается до 50-60 °С.
Работа дизеля с двухступенчатым наддувом протекает следующим образом. При работе под нагрузкой газовая турбина 4 вращает колесо нагнетателя 5 с большой частотой (15 000- 20 000 об/мин), вследствие чего нагнетатель засасывает воздух из атмосферы и под давлением (0,2-г-0,25) МПа подает его в охладитель, и далее в приводной нагнетатель. В этом нагнетателе воздух дополнительно сжимается еще на (0,034-0,05) МПа и через наддувочный коллектор и впускные окна подается в цилиндр дизеля. Во время пуска дизеля, когда газовая турбина не работает, приводной нагнетатель 7 засасывает воздух из атмосферы через нагнетатель 5 и охладитель 6 и подает его в дизель.
Комбинированный двухступенчатый наддув применен в двухтактных тепловозных дизелях 10Д100, 11Д45. 14Д40.
Рис. 15. Схема дизеля с комбинированным (двухступенчатым) наддувом: 1 — поршень; 2 — цилиндр дизеля; 3 — клапаны выпускные; 4 — газовая турбина; 5 — нагнетатель первой ступени; 6 — воздухоотделитель; 7 — нагнетатель второй ступени; 8 — редуктор привода нагнетателя второй ступени; 9 — кривошип; 10 — наддувочный коллектор В четырехтактных дизелях нагнетатель, приводимый от коленчатого вала, не нужен, так как энергии отработавших газов достаточно для сжатия воздуха до необходимого давления в турбокомпрессоре при всех скоростных и нагрузочных режимах работы.
Глава IV. ОСНОВЫ ТЕПЛОВЫХ ПРОЦЕССОВ ДИЗЕЛЕЙ
Источник