Мышечный способ движения животных
Подробное решение параграф §32 по биологии для учащихся 10 класса, авторов Теремов А.В., Петросова Р.А. Углубленный уровень 2017
Рассмотрите рис. 116 — 122. Какие органы и органеллы обеспечивают движение организмов? Какое строение имеет мышечная ткань? Какими свойствами обладает мышечная ткань?
Органоиды движения. Клетки могут перемещаться при помощи специализированных органоидов, к которым относятся реснички и жгутики. Реснички клеток всегда многочисленны (у простейших их количество исчисляется сотнями и тысячами), а длина составляет 10–15 мкм. Жгутиков же чаще всего 1–8, длина их – 20–50 мкм. Строение ресничек и жгутиков как у растительных, так и животных клеток сходно. Под электронным микроскопом обнаружено, что по всей длине их проходят микротрубочки. Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны. Движение жгутиков и ресничек обеспечивает не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек. Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.
Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек). Передвижение при помощи псевдоподий получило название амебоидного движения. В основе его лежит движение молекул особых белков, называемых сократимыми.
По строению мышечные клетки напоминают другие клетки организма, но отличаются от них формой. Каждая мышечная клетка подобна волокну, длина которого может достигать 20 см. Поэтому часто мышечную клетку называют мышечным волокном.
Характерной особенностью мышечных клеток (волокон) является присутствие в них больших количеств белковых структур, которые называются миофибриллами и сокращаются при раздражении клетки. Каждая миофибрилла состоит из коротких белковых волокон, называемых микрофиламенты. В свою очередь, микрофиламенты подразделяются на тонкие актиновые и более толстые миозиновые волокна. Сокращение происходит в ответ на нервное раздражение, которое передается к мышце от двигательной концевой пластинки по нервному отростку посредством нейромедиатора – ацетилхолина.
В соответствии со строением и выполняемыми функциями, выделяют две разновидности мышечной ткани: гладкая и поперечнополосатая.
Основными свойствами мышечной ткани является возбудимость и сократимость. Эти свойства мышечной ткани определяют ее основную функцию – обеспечение двигательных реакций организма.
Вопросы и задания
1. Какие способы передвижения характерны для простейших?
Амёбоидное движение характерно для простейших, образующих ложно —
ножки – временные выросты цитоплазмы, в которые постепенно перетекает
2. Что такое тропизмы и настии? Приведите примеры тропизмов и настий, соединяющих реснички друг с другом.
Движения многоклеточных растений. Движения растений связаны с ростом их органов в определённом направлении. Такие ростовые движения называют тропизмами (от греч. tropos – поворот, направление). Их причиной служит направленно действующий на тот или иной орган растения раздражитель: свет, влага, химическое вещество и т. п. Тропизмы бывают положительными и отрицательными, и в зависимости от характера раздражителя различают разные виды ростовых движений. Например, побег растения проявляет положительный фототропизм, т.е. растёт по направлению к свету, а корень – отрицательный фототропизм.
Растения реагируют также на гравитационное поле Земли. Например, зародышевый корень семени растёт вертикально вниз, в почву (положительный геотропизм), а побег – вертикально вверх от поверхности земли (отрицательный геотропизм).
Кроме тропизмов у растений наблюдаются движения иного типа – настии (от греч. nastos – уплотнённый). Они возникают при действии ненаправленных раздражителей, например сотрясения или температуры. Так, если прикоснуться к листьям мимозы стыдливой, они быстро складываются в продольном направлении и опускаются вниз (сейсмонастия). Цветки тюльпана открываются и закрываются в ответ на изменение температуры (термонастия).
3. Чем представлены мышечные системы многоклеточных животных?
Мышцы кишечнополостных представлены сократительными волоконцами, расположенными внутри клеток. Мышечная система кольчатых червей образована кожно — мускульным мешком, состоящим из кольцевых и продольных слоёв мышц, соединённых с кожей и щетинками. Мышечная система членистоногих состоит из отдельных мышц, прикреплённых изнутри к хитиновому покрову, поэтому их движения разнообразны. Одним из наиболее сложных движений является полёт насекомых. Например, летательный аппарат комнатной мухи образован одной парой крыльев, соединённых со спинной и боковой сторонами груди. Движение крыльев обеспечивают летательные мышцы, непосредственно с ними не связанные. Попеременно сокращая продольные и спинно — брюшные летательные мышцы, муха изменяет форму своей груди, что вызывает перемещения крыльев вверх и вниз. Амплитуда этих изменений невелика, но летательные мышцы сокращаются настолько быстро, что частота взмахов крыльев мухи достигает 200 в одну секунду.
Мышечная система позвоночных животных составляет в среднем 1/3 массы тела (у человека до 44%). Она связана с костями скелета, поэтому называется скелетной мускулатурой.
4. Охарактеризуйте основные способы мышечного движения беспозвоночных и позвоночных животных. Ответ проиллюстрируйте примерами.
Типы передвижения животных.
1. Амебоидное движение
Амебоидное движение присуще корненожкам и некоторым отдельным клеткам многоклеточных животных (например – лейкоцитам крови) . Пока у биологов нет единого мнения о том, что является причиной амебоидного движения. У клетки образуются выросты цитоплазмы, число и величина которых постоянно меняются, как меняется и форма самой клетки
2. Движения при помощи жгутиков и ресничек.
Движения при помощи жгутиков и ресничек характерно не только для жгутиконосцев и инфузорий, оно присуще некоторым многоклеточным животным и их личинкам. У высокоорганизованных животных клетки, имеющие жгутики или реснички, встречаются в дыхательной, пищеварительной, половой системах.
Строение всех жгутиков и ресничек практически одинаково. Вращаясь или взмахивая, жгутики и реснички создают движущую силу и закручивают тело вокруг собственной оси. Увеличение числа ресничек убыстряет передвижение. Такой способ движения свойствен обычно мелким беспозвоночным животным, обитающим в водной среде.
Но есть еще большая группа животных. А как передвигаются они.
3. Движение с помощью мышц.
Движение с помощью мышц осуществляется у многоклеточных животных. Характерно для беспозвоночных и позвоночных животных.
Любое движение – это очень сложная, но слаженная деятельность больших групп мышц и биологических, химических, физических процессов в организме.
Мышцы образованы мышечной тканью. Главная особенность мышечной ткани – способность сокращаться. За счет сокращения мышц и осуществляется движение.
У круглых червей поочередное сокращение продольных мышц вызывает характерные изгибы тела. За счет этих телодвижений червь двигается вперед.
Кольчатые черви освоили новые способы движения в связи с тем, что в их мускулатуре, помимо продольных мышц, появились поперечные мышцы. Поочередно сокращая поперечные и продольные мышцы, червь, используя щетинки на сегментах тела, раздвигает частички почвы и движется вперед.
Пиявки освоили шагающие движения, используя для прикрепления присоски. У представителей класса Гидроидные передвижение происходит “шагами”.
У круглых и кольчатых червей кожно — мускульный мешок взаимодействует с заключенной в нем жидкостью (гидроскелет) .
Брюхоногие моллюски двигаются благодаря волнам сокращения, пробегающим по подошве ноги. Обильно выделяемая слизь облегчает скольжение и ускоряет движение. Двустворчатые моллюски двигаются с помощью мускулистой ноги, а головоногие освоили реактивный способ передвижения, выталкивая воду из мантийной полости.
Членистоногих отличает наружный скелет.
Многие ракообразные для передвижения по грунту используют ходильные ноги, а для плавания им служит либо хвостовой плавник, либо плавательные ноги. Любой из этих способов передвижения возможен при наличии хорошо развитой мускулатуры и подвижном сочленении конечностей с туловищем.
Паукообразные передвигаются на ходильных ножках, а мелкие пауки, образующие паутину, могут перемещаться с помощью ветра.
У большинства членистоногих специальными органами передвижения служат не только ноги, но и (в зависимости от систематической принадлежности) другие образования, например крылья у насекомых. У кузнечиков с низкой частотой биения крыльев мышцы прикрепляются к их основаниям.
Короткие конечности пресмыкающихся, расположенные по бокам туловища, не поднимают тело высоко над землей, и оно волочится по земле.
5. Какое строение имеет скелетная мышца? Опишите процесс мышечного сокращения. Какую роль в нём играет центральная нервная система?
Скелетная мышца имеет расширенную часть – брюшко и сухожилия, с помощью которых она крепится к костям или другим органам, например коже. Снаружи мышца покрыта оболочкой из соединительной ткани, внутри имеются собранные в пучки мышечные волокна – многоядерные клетки, которые пронизаны кровеносными сосудами и нервами. Каждое мышечное волокно содержит миофибриллы (от греч. myos – мышца), состоящие из сократительных белков миозина и актина.
Сокращение мышечных волокон происходит под влиянием нервных импульсов, поступающих от двигательных нейронов центральной нервной системы. При этом происходит втягивание более тонких нитей актина между толстыми нитями миозина, что ведёт к укорачиванию и напряжению мышечных волокон и, следовательно, всей мышцы. Для мышечного сокращения необходимо присутствие ионов Са2+ и молекул АТФ – источника энергии. Координация мышечных движений у позвоночных животных, в том числе и человека, осуществляется высшими двигательными центрами, расположенными в больших полушариях головного мозга. Благодаря координации достигается согласованная работа скелетных мышц. Например, при сокращении двуглавой мышцы плеча, сгибающей руку человека в локтевом суставе, трёхглавая мышца плеча, выполняющая функцию разгибателя руки, расслаблена.
6. Объясните, почему стояние на месте более утомительно, чем умеренная ходьба.
При выполнении статической работы происходит напряжение всех мышечных волокон, что приводит к сдавлению кровеносных сосудов, проходящих в толще мышцы. При выполнении динамической работы мышцы сокращаются попеременно, а значит, питание их нарушается не так сильно и с меньшей скоростью накапливаются продукты обмена.
7. Что такое мышечное утомление? Каковы его основные причины?
Временное понижение работоспособности скелетных мышц, наступающее в результате работы и исчезающее после отдыха, называют мышечным утомлением. Причинами наступления мышечного утомления могут быть процессы, происходящие как в самих скелетных мышцах (накопление продуктов обмена – молочной, фосфорной кислот; уменьшение энергетических запасов), так и утомление нервных центров, управляющих их работой.
8. По муляжу торса человека выясните, какие мышцы входят в состав скелетной мускулатуры человека. Перечертите в тетрадь и заполните таблицу.
Источник
§ 40. ДВИЖЕНИЕ ЖИВОТНЫХ
Основные понятия и ключевые термины: ДВИЖЕНИЕ ЖИВОТНЫХ (ЛОКОМОЦИЯ). Амёбоидное движение. Мерцательное движение. Мышечное движение. СИММЕТРИЯ ТЕЛА. Радиально-лучевая, радиально-осевая и двусторонняя симметрии.
Вспомните! Кто такие животные?
Подумайте
«Движение — это жизнь», — утверждал великий древнегреческий мыслитель Аристотель. А согласны ли с этим утверждением животные (например, губки или коралловые полипы), которые ведут прикреплённый образ жизни?
СОДЕРЖАНИЕ
Каковы особенности движения животных?
Движение — это перемещение составных частей клетки, самих клеток, органов организма и самого организма путём активного изменения положения или формы. Живая природа наполнена движениями. Движется цитоплазма во всех живых клетках, перемещается жидкость в тканях, изменяют свою форму клетки растений, грибов и животных, которые имеют ложные ножки, жгутики и реснички, поворачиваются цветки или листья растений к свету. Передвигаются и изменяют своё место в пространстве и сами свободноживущие организмы.
Существуют ли какие-то отличия в движении у животных? Особенности движения животных связаны с сократимостью, что определяется на каждом из уровней организма. На уровне молекул эту способность обусловливают особые белки — актин и миозин. Именно они образуют сократительные волоконца внутри клеток. Проявления движения на уровне клеток связаны также с органеллами движения — псевдоподиями, жгутиками и ресничками. Большое значение для изменения формы клеток и движения животных имеет отсутствие в их клетках жёсткой клеточной оболочки. Тканями животных, способными сокращаться, являются мышечные. В организме животных различают гладкую и поперечно-полосатую мышечные ткани, которые образуют специальные сократительные органы движения — мышцы. Гладкие и поперечно-полосатые мышцы формируют мышечную систему в пределах опорно-двигательной.
Итак, ДВИЖЕНИЕ ЖИВОТНЫХ — способность клеток или организмов к активным взаимоотношениям со средой, которая возникает как результат сократимости на разных уровнях организации жизни.
Каковы виды движения животных?
Движения животных могут быть пассивными (воздух перемещает пауков на паутинках) и активными (бег гепарда, плавание рыб). И те, и другие движения играют свою роль в жизни организмов, но специфическим для животных является именно активное движение.
ЛОКОМОЦИЯ, или АКТИВНОЕ ДВИЖЕНИЕ ЖИВОТНЫХ, — это процесс жизнедеятельности, в котором принимают участие органеллы движения и органы движения для активного перемещения клеток или организмов в пространстве.
В животном мире все типы активного движения, независимо от того, обусловлены ли они движениями цитоплазмы, или движениями клеточных органелл, или органами движения, связаны с сократительными элементами цитоплазмы клеток — микротрубочками. В зависимости от их расположения и способов взаимодействия в клетке различают амёбоидное, мерцательное (ресничное и жгутиковое) и мышечное движение.
Ил. 156. Амёбоидное движение лейкоцитов
Амёбоидное движение — это движение с помощью ложных ножек, которые появляются благодаря медленному перетеканию цитоплазмы и изменению формы клетки.
У губок такое движение свойственно амёбоцитам, которые обеспечивают питание и переваривание частичек пищи. Способны к амёбоидному движению и фагоцитарные клетки беспозвоночных, и специализированные лейкоциты позвоночных, которые защищают организм от чужеродных тел.
Ил. 157. Ресничное движение плоского червя
Мерцательное движение — это движение с помощью ресничек и жгутиков, которые являются длинными или короткими нитевидными цитоплазматическими выростами клеток с микротрубочками внутри.
Благодаря движению ресничек перемещаются ресничные черви, личинки беспозвоночных животных, яйцеклетки в яйцеводах и задерживается пыль в дыхательных путях позвоночных. Волнообразные сокращения жгутиков воротничковых клеток губок, пищеварительных клеток гидры подгоняют воду с кислородом и частичками пищи. Те же жгутики помогают двигаться сперматозоидам и оплодотворять яйцеклетку.
Ил. 158. Мышечное движение гепарда
Мышечное движение — это движение с помощью сократительных органов мышц, в образовании которых принимают участие мышечные ткани. Медленнее сокращаются гладкие мышцы, но они работают почти без устали. У большинства беспозвоночных животных эти мышцы образуют всю мускулатуру тела. У позвоночных животных гладкие мышцы образуют стенки пищеварительного тракта, дыхательных путей, кровеносных сосудов, мочевого пузыря. Поперечно-полосатые мышцы могут быстро сокращаться и расслабляться, что лежит в основе таких сложных движений, как сокращение сердца, плавание, бег, полёт, скольжение, прыжки и т. п. Эти мышцы характерны для головоногих моллюсков, членистоногих и позвоночных.
Впервые мышцы появляются у плоских червей. У этих животных, а также у круглых и кольчатых, мышцы функционируют в составе кожно-мышечного мешка. У кольчатых червей формируются примитивные конечности — параподии, которые являются парными выростами тела в каждом сегменте. Членистоногие уже имеют членистые многофункциональные конечности, которые в значительной степени способствовали их приспособленности к условиям жизни. У позвоночных животных добыча пищи, миграция, защита от врагов уже связаны с парными плавниками или пятипалыми конечностями наземного типа. Способы активного перемещения животных с помощью этих органов движения очень разнообразны: плавание, летание, бег, ходьба, скольжение, реактивное движение, шагание, прыганье, ползание и др.
Итак, основные виды движения у животных связаны с определёнными органеллами движения и органами движения, которые способны сокращаться благодаря сократительным белкам.
От чего зависит тип симметрии тела у животных?
СИММЕТРИЯ ТЕЛА — закономерное расположение подобных частей тела организма относительно центра, оси или плоскости симметрии. Формирование различных видов симметрии тела связано с определённым образом жизни. У животных выделяют два основных типа симметрии: радиальную и двустороннюю.
Радиально-лучевая симметрия (сферическая, шарообразная) — симметричное расположение частей тела вокруг центра симметрии в радиальных направлениях. Этот тип симметрии присущ обитателям водной среды, которые живут в толще воды или на дне и подвергаются со всех сторон одинаковому влиянию факторов (например, у колониальных коловраток, правильных морских ежей).
Радиально-осевая симметрия — симметричное расположение частей тела вокруг оси симметрии. Эта симметрия характерна для животных, ведущих малоподвижный или прикреплённый образ жизни. Радиальная симметрия характерна для многих книдарий (гидры, медузы, коралловые полипы), а также для большинства иглокожих (например, для морских звёзд).
Двусторонняя симметрия — симметричное расположение частей относительно плоскости симметрии. Эта симметрия возникла в связи с активным перемещением в пространстве. У двусторонне-симметричных животных появляется дифференциация на спинную и брюшную стороны, поскольку эти части тела попадают в разные условия среды. Благодаря такой симметрии тело животных уже имеет передней и задний отделы.
Ил. 159. Симметрия тела животных: 1 — радиально-лучевая симметрия коловратки; 2 — радиально-осевая симметрия кораллового полипа; 3 — двусторонняя симметрия краба
Плоскость симметрии можно провести и вдоль тела, которая разделяет его на левую и правую половины. Таким образом, у двусторонне-симметричного животного отличают верхнюю и нижнюю, переднюю и заднюю части, и только правая и левая одинаковы и зеркально отражают друг друга. Этот тип симметрии характерен для большинства животных.
Итак, для животных характерны два основных типа симметрии, которые являются отражением их образа жизни.
ДЕЯТЕЛЬНОСТЬ
Учимся познавать
Примените свои знания: 1) сопоставьте предложенные названия животных с их изображениями: рыба-ёж, колониальная коловратка, медуза-аурелия; 2) определите тип симметрии тела этих животных; 3) укажите образ жизни и среду обитания этих животных.
Название
Тип симметрии
Способ жизни
Среда обитания
Биология + Искусство
Ил. 160. Рафаэль. Обручение Марии. 1504
Симметрия в пространстве была известна художникам, скульпторам и архитекторам ещё в глубокой древности. Мы видим элементы симметрии на картинах, в древних наскальных изображениях, орнаментальных украшениях древних предметов и оружия. Египетские пирамиды и пирамиды майя, купола славянских соборов, греческих храмов и дворцов, античные арки и амфитеатры — вот только некоторые примеры стремления человека к возвышенной красоте и подлиннму совершенству. А может быть вещь красивой, если она асимметрична, то есть лишена симметрии? Приведите примеры животных, обладающих асимметрией.
РЕЗУЛЬТАТ
Оценка
Вопросы для самоконтроля
1. Что такое движение у животных? 2. Какова основная особенность движения животных? 3. Что такое локомоция? 4. Назовите виды движения у животных. 5. Что такое симметрия тела? 6. Назовите два основных типа симметрии тела у животных.
7. Какова роль движения в жизни животных? 8. От чего зависит способ передвижения животных? 9. От чего зависит тип симметрии тела у животных?
10. Как определить тип симметрии тела у животных? Приведите примеры асимметрии в животном царстве.
Источник