- Как решать логические и математические задачи
- Решаем логические задачи
- Основные методы решения логических задач
- Метод последовательных рассуждений
- Метод «с конца»
- Решение логических задач с помощью таблиц истинности
- Метод блок-схем
- Как решить любую задачу? Часть 1. Алгебра
- 5 принципов которые помогут решить задачу:
- 8 вопросов, которые помогут решить почти любое задание в алгебре
Как решать логические и математические задачи
Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.
Решаем логические задачи
Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.
Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.
К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.
Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.
Основные методы решения логических задач
- метод рассуждений;
- с помощью таблиц истинности;
- метод блок-схем;
- средствами алгебры логики (алгебры высказываний);
- графический (в том числе, «дерево логических условий», метод кругов Эйлера);
- метод математического бильярда.
Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):
- метод последовательных рассуждений;
- разновидность метода рассуждений — «с конца»;
- табличный способ.
Метод последовательных рассуждений
Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.
На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.
Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .
Разложи карандаши в описанном порядке.
Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.
- Больше всего букв в слове «коричневый», значит, он лежит третьим.
- Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
- Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
- Для зеленого карандаша осталась последняя позиция — он лежит четвертым.
Метод «с конца»
Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.
Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.
Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?
Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.
Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.
Решение логических задач с помощью таблиц истинности
Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».
Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».
Кто забросил мяч, если только один из троих сказал неправду?
Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.
Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.
Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.
И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.
Значит, правильный ответ – мяч забросил синий.
Метод блок-схем
Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.
- графически (блок-схемой) описываем последовательность выполнения операций;
- определяем порядок их выполнения;
- в таблице фиксируем текущие состояния.
Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.
Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!
Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.
Источник
Как решить любую задачу? Часть 1. Алгебра
Обучение математике в школе построено по принципу «повторяй за мной». Учитель дает какой-то метод решения или некий алгоритм, а ученики с помощью этого метода решают задачи. Это похоже на то, как мастер обучает подмастерье. Мастер показывает инструменты и объясняет, что с их помощью можно делать — вот пила, ей отпиливают дерево. А вот рубанок – он нужен для того, чтобы придать отпиленному куску определенную форму. И использовав эти и другие инструменты можно сделать, например, табуретку. Так же в школе: для решения квадратных уравнений удобно пользоваться дискриминантом и теоремой Виета, для рациональных неравенства – хорошо подходит метод интервалов и т.д.
Это, конечно, достаточно эффективный способ обучения, но для того, чтобы набирать на ЕГЭ 80+ баллов этих навыков не хватит. Нужно нечто большое – нужно уметь понять, как решается задача, даже если не видел ничего аналогичного раньше. Это как по совершенно новому для тебя предмету догадаться какие инструменты нужно применить — «сделайте стол, столы вы еще не делали, но делали стулья».
Придумывать новое решение самостоятельно – это тоже навык, который надо развивать. Нужно привыкнуть не бояться нового, уметь задавать себе правильные вопросы и лояльно относиться к своим ошибкам. В этой статье я написала, что помогает лично мне и моим ученикам решать новые задачи.
Предупреждаю: это всё работает только если вы знаете необходимую теорию. То есть уметь отличать рубанок от ножовки всё-таки надо. 🙂
5 принципов которые помогут решить задачу:
Не знаешь, что делать – делай, что можешь. Некоторые преподаватели это правило еще формулируют так: «давайте что-нибудь сделаем, а потом подумаем». Новая задача потому и новая, что приступая к решению, ты понятия не имеешь как ее решать. Но почти всегда можно что-то записать по-другому, как-либо преобразовать, изменить. Попробуй, вдруг это верный шаг? Зачастую ученики даже не пытаются делать так, потому что не видят ответа на вопрос: «ну сделаю, а что дальше?». В этом смысле они похожи на водителей, которые ждут пока зеленый сигнал светофора загорится сразу вдоль всего маршрута — действительно, зачем ехать, ведь вон там впереди горит красный! Правильный подход тут, конечно же, иной – пока будешь ехать, сигнал, возможно, уже смениться на зеленый. Или нет. И тогда тебе поможет следующий принцип:
Не бойся «тупиков» — просто начинай решение заново, главное не сдаваться. Нет ничего плохого в том, чтоб решая задачу, пойти не тем путем даже десяток раз. Школьные учебники как-то незаметно приучают нас к тому, что решение должно быть прямое и четкое – «раз, два, три!», ведь в них оно записано именно так. А «муки поиска» решения всегда остаются за скобками, выбрасываются как лишнее, чтоб не захламлять суть. Вот и получается ситуация как на картинке.
Поэтому знай, что…
Задача не обязана решаться с «полпинка». И чем сложнее задача, тем больше тупиков ты обойдешь перед решением. И это хорошо! Главное помни: «прогулки по тупикам» — не пустая трата времени и не потери! Как раз наоборот — в такие моменты ты развиваешь мозги сильнее всего. Когда ты ищешь новое решение, у тебя прямо в этот момент формируются в мозгу новые нейронные связи, и ты в буквальном смысле становишься умнее. Более того, вот этот поиск неведомого решения — на самом деле и есть настоящая математика! Да-да, для кого-то это будет новостью, но математика это не когда ты быстренько подставляешь «цифирьки в формулки» и тут же считаешь ответы, решая задачи по аналогии, а когда ты долго-долго перебираешь разные методы решений, пробуешь применить различные идеи, крутишь задачу так и сяк, и в какой-то момент тебя озаряет, и ты находишь путь, ведущий к ответу. А в поиске этих озарений тебе поможет принцип…
Случайности не случайны. Если ты заметил какое-то совпадение, то, возможно, это не совпадение, а вполне себе ключ к решению. Все переменные стоят внутри одинаковых выражений? У логарифмов совпадают основания? Или все знаменатели дробей являются квадратами друг друга? Подумай — как это можно использовать? Подробнее об этом поговорим ниже.
Если закрыта одна дверь, открыта другая. Не циклись на одной мысли. Возможно, к решению можно подойти вообще с другой стороны. Но перед тем как зачеркивать очередную попытку решения – внимательно проверь, может быть ты просто сделал в нем какую-то простенькую ошибку и поэтому не получается дорешать до конца?
8 вопросов, которые помогут решить почти любое задание в алгебре
Решая задачу, мы ищем ответ на вопрос задания – нужное значение переменной, интервал решений или еще что-то в этом роде. И чтобы прийти к ответу на этот главный вопрос нужно уметь задавать себе промежуточные, опорные вопросы, которые могут натолкнуть на правильный путь рассуждений. Вот эти вопросы:
1. Что передо мной (уравнение, неравенство, выражение)? Как обычно решается такой тип задач?
— Что передо мной?
— Квадратное неравенство.
— Как решаются квадратные неравенства?
— Методом интервалов.
\(x∈[-10;10]\)
Пример 2: Решите уравнение \(\cos\) \(\frac<π(x-7)><3>\) \(=\) \(\frac<1><2>\)
— Что передо мной?
— Простейшее тригонометрическое уравнение.
\(\frac<π(x-7)><3>\) \(=±\) \(\frac<π><3>\) \(+2πn,n∈Z\)
— А теперь что передо мной?
— Хм… Выглядит странно, но похоже на линейное уравнение, так как тут только одна переменная (\(x\)) и она в первой степени.
— Как решаются линейные уравнения?
— Нужно избавиться от знаменателей, раскрыть все скобки и перенести известные вправо, а неизвестные влево, в общем, привести уравнение к виду \(x=[число]\).
2. Решал ли я похожие задачи? Как я их решал?
— Что передо мной?
— Тригонометрическое уравнение (не простейшее).
— Как обычно решаются тригонометрические уравнения?
— Уравнение преобразовывается с помощью формул, пока невозможно будет сделать замену. Очевидно, что тут сразу можно сделать замену.
Получилось кубическое уравнение.
— Решал ли я похожие задачи? Как я их решал?
— Обычно кубические уравнения я решал либо методом группировки, либо делением многочлена на многочлен.
3. Какие формулы я вижу / какие формулы можно применить? Что надо сделать, чтоб их можно было применить?
— Какие формулы я тут вижу?
— Полностью – никаких. Но вот такое же произведение синус на косинус есть в формуле двойного угла синуса:
4. Какие «неслучайности» я вижу? Как их можно использовать?
— Какие «неслучайности» я вижу?
— Очевидно, что выражения \((4x-8)\) и \((x-8)\) с той и другой стороны – это неспроста.
— Как их можно использовать?
— Поделить на эти выражения нельзя. Можно попробовать перенести то, что стоит справа в левую часть.
Теперь можно одинаковые выражения вынести за скобку.
— Какие «не случайности» можно заметить?
— И \(9\), и \(27\) являются степенями тройки: \(3^2=9\), \(3^3=27\).
— Как это можно использовать?
— Можно заменить \(9\) на \(3^2\), а \(27\) на\( 3^3\), вот так:
А теперь можно применить свойство степеней: \((a^n)^m=a^
5. Что я в принципе могу сделать? Какие преобразования допустимы/возможны?
— Что можно сделать с этим выражением?
— Можно вынести множители из-под знака корня.
— Какие еще преобразования здесь возможны?
— Можно вынести за скобки \(4\sqrt<2>\).
— Что еще можно сделать?
— Применить формулу двойного угла \(\cos2α=1-2\sin^2α \)
6. Что мне мешает? Как можно сделать выражение/уравнение/неравенство проще? Как мне было бы удобнее? Что я могу сделать, чтоб стало удобнее?
— Как можно сделать уравнение сильно проще?
— Если избавиться от корня, то уравнение станет проще.
— Как можно избавиться от корня?
— Можно возвести обе части уравнения в квадрат.
— Как можно упростить уравнение?
— Можно избавиться от знаменателя.
— Как обычно избавляются от знаменателя?
— Умножением обеих частей уравнения на наименьший общий знаменатель.
— Как было бы удобнее?
— Было бы удобнее, чтоб аргументы у логарифмов были одинаковые.
— Что надо сделать, чтоб аргументы у логарифмов были одинаковые?
— Вынести квадрат вперед и каким-то образом перевернуть дробь.
— Как можно перевернуть дробь?
— Можно использовать степень \(-1\).
— Что можно сделать теперь?
— Логарифмы полностью одинаковые значит можно либо сделать замену, либо вынести их за скобку.
7. Чего от меня хочет задача? Когда будет выполняться условие задачи?
Допустим, вы никогда не сталкивались с дробными неравенствами или забыли, как их решать. Давай просто порассуждаем.
— Чего от меня хочет задача?
— Чтоб левая часть была положительна.
— А в каком случае дробь (не именно эта, а вообще любая) будет больше нуля? Короче говоря, когда мы делением получим знак плюс?
— Когда будем делить положительное на положительное, либо отрицательное на отрицательное. Иными словами — числитель и знаменатель должны иметь одинаковый знак (и при этом знаменатель не равен нулю).
— А когда будет положителен числитель?
— Когда икс больше трех. Если же икс меньше трех, то числитель будет иметь знак минус.
— Тот же вопрос про знаменатель?
— Знаменатель положителен при иксе большем \(1\), и отрицателен при иксе меньше \(1\).
— Так когда же будет выполняться условие задачи?
— При иксе большем \(3\) (там в дроби и сверху и снизу плюс) и при иксе меньше \(1\) (в этом случае и числитель, и знаменатель имеют знак минус).
Всё, неравенство решено. Заметим, что рассказанное выше — это логическая «начинка» метода интервалов. Помните такой? «Приравняйте к нулю, найдите корни нанесите их на числовую ось, расставьте знаки…» Вот он.
— Чего от меня хочет задача?
— Чтоб я нашел такие иксы, при которых слева – ноль.
— А что у нас стоит слева?
— Сумма двух квадратов.
— В каком случае сумма квадратов будет равняться нулю?
— Хм… Квадрат не может быть отрицательным, он всегда больше либо равен нуля. А мы складываем два таких выражения. Значит, нам нужны такие иксы, при которых оба квадрата ОДНОВРЕМЕННО обратятся в ноль, потому что в остальных случаях сумма будет больше нуля.
8. Могу ли я сделать какую-нибудь замену?
— (вспоминаем предыдущие пункты) Какие неслучайности я вижу?
— В скобке вторая дробь – это перевернутая первая.
— Как это можно использовать?
— Ну…
— Могу ли я сделать какую-либо замену?
— Да, можно заменить \(\frac
— Какие преобразования тут возможны в принципе?
— О! Можно перенести всё влево и разложить на множители по формуле разности квадратов!
— Что можно теперь сделать?
— Можно привести выражения в скобках к общему знаменателю.
Итого: приучайтесь рассуждать в математике. Не мыслите шаблонами, а ищите путь. И написанные выше вопросы вам в этом помогут. Успешных решений!
Источник