Генетические заболевания, есть ли шанс их избежать?
Хотя для некоторых генетических заболеваний существуют эффективные методы лечения, для многих из них их все еще нет. И эти генетические заболевания поднимают самые тревожные вопросы в отношении будущего потомства. Сегодня ДНК исследования на генетические болезни с высокой точностью определяют наличие нарушений в генах и помогают людям принимать ответственные и осознанные решения, касающиеся их собственного здоровья или здоровья их детей.
Что означает наследственные заболевания?
Геном человека – это сложный набор инструкций, своеобразное руководство, которое определяет наш рост и развитие. Однако, в отличие от напечатанной книги, геном человека может изменяться. Эти изменения могут повлиять на отдельные участки (A, C, G или T) или гораздо более крупные части ДНК или даже хромосомы. Наша ДНК обеспечивает код для создания белков – молекул, которые выполняют большинство функций в нашем организме.
Тем не менее, когда часть нашей ДНК изменяется каким-либо образом, белок, который она кодирует, также подвергается воздействию, из-за чего он может больше не выполнять свою обычную функцию. В зависимости от того, где происходят эти мутации, они могут оказывать незначительное влияние или вообще не оказывать никакого воздействия или могут существенно изменить биологию клеток в нашем организме, что приведет к генетическому заболеванию.
Генетические заболевания – обширная группа заболеваний, которые определяются теми или иными нарушениями в геноме и закладываются еще на этапе формирования эмбриона. Причинами появления таких заболеваний являются мутации в генах, родственные связи (браки среди близких родственников), окружающая среда. Могут быть причиной как точечных мутаций, так и грубых нарушений структуры хромосом или митохондриальной ДНК. Каковы риски появления таких заболеваний?
Если у партнеров уже есть ребенок с аутосомно-рецессивным наследственным заболеванием, они оба по определению считаются носителями, поэтому существует 25-процентный риск того, что каждый будущий ребенок тоже будет иметь это заболевание. Если один из родителей несет мутацию, которая вызывает аутосомно-доминантное наследственное заболевание, независимо от того, клинически затронут этот родитель или нет, существует 50-процентный риск того, что каждый будущий ребенок унаследует мутацию и, следовательно, получит это заболевание. Однако, если пара родила ребенка с аутосомно-доминантным наследственным заболеванием, хотя ни один из родителей не несет мутации, то предполагается, что произошла спонтанная мутация и что большого риска рецидива заболевания у других детей нет.
Тем не менее, существует также вероятность того, что новая мутация могла произойти в прогениторной клетке-предшественнике у одного из родителей, так что некоторая неизвестная доля яйцеклеток или сперматозоидов этого индивидуума может нести мутацию, даже если она отсутствует в соматических клетках, включая кровь, которая обычно берется для тестирования. Этот сценарий называется мозаицизмом клеток зародышевой линии.
Наконец, что касается нарушений, связанных с хромосомой Х, то, если предполагается, что мать несет ген заболевания, существует 50-процентная вероятность того, что каждый сын будет иметь это заболевание и что каждая дочь будет носителем.
Однако большинство общих наследственных врожденных дефектов являются многофакторными. Если у пары был один больной ребенок, угроза для каждого будущего ребенка составит около 3 процентов. Если они родили двух больных детей, вероятность рецидива возрастает примерно до 10 процентов. Однако эти расчеты сделаны для населения в целом, поэтому риски в отдельных семьях могут различаться.
Причины и факторы возникновения генетических ошибок
Генетическое расстройство – это заболевание, вызванное изменением или мутацией в последовательности ДНК человека. Эти мутации, в свою очередь, могут быть вызваны ошибками в репликации ДНК или факторами окружающей среды, такими как сигаретный дым и облучение, которые приводят к изменению в последовательности ДНК.
Генетические расстройства можно разделить на три основные категории:
- Одиночные генетические расстройства: нарушения, вызванные дефектами одного конкретного гена, часто с простыми и предсказуемыми типами наследования. Они в свою очередь делятся на:
- аутосомно-доминантные болезни: нарушения одного гена, которые возникают, когда у человека есть одна измененная копия этого гена и одна его здоровая копия. Например, это болезнь Хантингтона;
- аутосомно-рецессивные болезни: нарушения одного гена, которые возникают только тогда, когда у человека есть две измененные версии соответствующего гена. Например, муковисцидоз;
- нарушения по X–хромосоме: нарушения, которые отражают присутствие измененного гена в Х-хромосоме. Х-расстройства чаще встречаются у мужчин, потому что они имеют только одну Х-хромосому. Как следствие, мужчинам нужна только одна копия измененного гена для появления симптомов. Пример – мышечная дистрофия.
- Хромосомные расстройства: возникают е в результате изменения количества или структуры хромосом. Это, например, синдром Дауна, который является результатом появления дополнительной 21-й хромосомы, то есть у такого человека три копии 21-й хромосомы вместо двух.
- Многофакторные расстройства (сложные заболевания): расстройства, вызванные изменениями в нескольких генах, часто в сложном взаимодействии с факторами окружающей среды, возрастом, образом жизни, привычками, такими как диета или сигаретный дым. Это, например, рак.
Семейная история позволяет пролить свет на характер генетического наследования и может повлиять на расчет показателей риска, выявляя другие генетические воздействия. Специалист-генетик сможет определить, имеет ли предполагаемое заболевание сильный генетический компонент и, если это так, является ли наследственность моногенной, хромосомной или многофакторной.
Методы предотвращения генетических патологий
Сегодня ученые работают над разработкой методик CRISPR-Cas, которые позволяют редактировать геном высших животных, в том числе человека. Это перспективное, но вызывающее споры относительно своей этичности, направление генной инженерии. Не так давно появились убедительные доказательства работы этой системы – с помощью редактора CRISPR-Cas9 был успешно изменен геном эмбриона с гипертрофической кардиомиопатией. Предполагается, что подходы CRISPR-Cas в будущем будут использовать для лечения наследственных заболеваний. Но система, к сожалению, применима не везде. Например, наличие лишней хромосомы (синдром Дауна) устранить с помощью CRISPR-Cas9 невозможно даже теоретически. Поэтому в данный момент все эффективные способы предотвращения генетических заболеваний сводятся к генетической диагностике родителей и эмбриона.
Большинство пар, которые собираются пройти генетическую диагностику попадают в одну из двух категорий: те, у кого уже есть ребенок с генетически обусловленными проблемами, и те, у кого есть один или несколько родственников с заболеванием, которое, по их мнению, может быть унаследовано.
Для диагностики генетических нарушений используются такие методы, как:
- пренатальная генетическая диагностика. Скринирование позволяет определить патологии на стадии внутриутробного развития (синдром Дауна, синдром Эдвардса, синдром Патау и некоторые другие). Сегодня возможно неинвазивное исследование, когда берется генетический материал матери на сроке 10 недель;
- преимплантационная генетическая диагностика (в случае искусственного оплодотворения) – позволяет найти у эмбриона до 6000 маркеров наследственных заболеваний;
- кариотипирование родителей – обеспечивает наиболее точные значения риска наследственных заболеваний. Кариотипирование обычно проводится еще на этапе планирования беременности.
Любой ДНК анализ на наследственные заболевания дает процентную вероятность риска проявления наследственного заболевания. Даже в случае пренатальной диагностики, которая дает ответ с точностью 98%, остается небольшой шанс родить здорового ребенка. Поэтому решение, как распорядиться предоставленной информацией, принимают только родители будущего ребенка. Лаборатория в свою очередь гарантирует конфиденциальность исследования.
Источник
Можно ли усовершенствовать способы защиты полностью избавиться от возникающих мутаций
Успешное применение CRISPR/Cas9 системы для редактирования генома эмбриона
Генетические анализы в настоящее время направлены на предупреждение наследственного заболевания или своевременное вмешательство для снижения или предотвращения негативного эффекта заболевания. Это связано с тем, что развитие инструментов для фактического исправления мутации в гене, вызывающем наследственное заболевание, отстает от методов диагностики.
В чем же сложность исправления мутации в гене? У человека примерно 30 000 генов, взрослый человек состоит в среднем из 4 триллионов клеток, некоторые из них ежедневно обновляются. Для полного «исцеления» нужно исправить мутацию в каждой клетке организма и при этом не «испортить» другие гены. Тут и начинаются сложности.
Первая задача – это сам механизм исправления гена. Для исправления генетической «ошибки», приводящей к заболеванию, нужны весьма специфические инструменты – молекулярные «ножницы», которые разрежут ДНК в строго указанном месте, и «пинцет», который вместо вырезанного фрагмента с ошибкой вставит правильный кусок ДНК. Вся система клетки направлена на сохранение генетической информации в неизменном виде. ДНК, которая является материальным носителем этой информации, сама по себе в клетке не работает – это инструкция по построению разных функциональных молекул и их применению. Это значит, что любая попытка внести изменения в ДНК воспринимается клеткой как нападение, от которого она может защищаться разными способами. Некоторые вирусы научились встраиваться в ДНК человека в обход этой защиты. Их инструменты можно использовать для привнесения в ДНК клетки здорового гена целиком, с которого будет синтезироваться правильно работающий белок. Однако вирусы не заботятся о том, чтобы не испортить другие гены в чужом геноме при встройке, поэтому такой метод исправления мутаций может быть опасен нарушением других, здоровых генов.
Также есть специальные системы внутри клетки, которые помогают разным белкам, работающим с ДНК, находить нужные гены, следят за цельностью длинных молекул ДНК и т.д. Эти белки умеют распознавать определенную последовательность нуклеотидов, то есть их можно настроить так, чтобы они работали с высокой точностью только с тем участком, который нужно исправить. Однако проблема таких молекулярных ножниц заключается в том, что они очень большие и доставить их в клетки организма человека очень сложно.
Самая остроумная и многообещающая идея направляемых «молекулярных ножниц» основана на использовании свойств защитной системы бактерий. Еще в 1987 году в ДНК бактерий нашли необычные последовательности, которые позже назовут CRISPR-кассетами. Однако на тот момент разобрать их структуру и понять функцию не удалось. До 2006 года эти последовательности активно использовали для классификации бактерий, так как они значительно различаются не только между видами, но даже между штаммами – они были своеобразными генетическими карточками каждого бактериального штамма. Но в 2006 году, объединив данные о структуре CRISPR-кассет и ассоциированных с ними белков cas, исследователи поняли функцию всей этой системы, а также механизм ее работы. CRISPR/Cas система бактерий – это защитный механизм, предохраняющий одноклеточный организм от проникновения чужой ДНК. В ДНК CRISPR-кассеты хранится информация о вирусах, которые раньше попадались этой бактерии или ее предкам, в виде небольших фрагментов ДНК этих вирусов. С помощью этих фрагментов клетка вырабатывает сигнальные РНК, распознающие проникшую вирусную ДНК и направляющие к ней cas-белки, которые разрежут ее на небольшие безопасные для клетки куски. Получается, что эта система позволяет разрезать ДНК, но только в определенном месте в соответствии с тем, где укажут небольшие молекулы РНК. При использовании этого механизма для исправления мутации в клетку человека нужно доставить лишь небольшой (по сравнению с описанными выше собственными белками клетки) белок cas9 и «руководящую» РНК, которая укажет место мутации.
Второй задачей «починки» гена является доставка инструментов до всех клеток, чтобы исправить ошибку в каждой клетке организма. К этой задаче подходят с двух сторон. С одной стороны, в каждом типе клеток каждого органа работают разные гены. Это значит, что исправлять ген нужно не во всех клетках организма, а только в тех, в которых этот ген необходим для полноценного выполнения функций ткани или органа. Такой подход значительно ограничивает количество клеток, в которые нужно доставить инструментарий и позволяет подобрать наиболее эффективный способ в зависимости от особенностей этих клеток, тканей, органов. С другой стороны, наш организм изначально развивается из одной клетки и на ранних этапах развития эмбрион состоит всего из нескольких клеток. И если внести изменение на таком этапе, то с высокой эффективностью можно получить эмбрион с исправленной мутацией во всех клетках, а значит из него вырастет здоровый человек.
Несмотря на кажущуюся простоту идеи использовать систему CRISPR/Cas9 для исправления мутации на стадии зиготы (оплодотворенной яйцеклетки, из которой развивается эмбрион), такая процедура была успешно проведена только недавно. Исследователи из Китая представили результаты работы, в которой описали применение CRISPR/Cas9 для исправления точечной мутации в гене HBB, вызывающей β-талассемию, и мутации в гене G6PD, связанной с развитием дефицита глюкозо-6-фосфатдегидрогеназы, на самой ранней стадии развития эмбриона – в зиготе.
Процедура по исправлению мутации на стадии зиготы проводилась при искусственном оплодотворении. В более ранних исследованиях оценивали эффективность редактирования генома с помощью системы CRISPR/Cas9 на нежизнеспособных зиготах с тремя пронуклеусами (результат некорректоного оплодотворения). Он оказался не слишком впечатляющим – исправление мутации наблюдали только 20% случаев.
В последней же работе провели процедуру редактирования генома на нормальных зиготах. При этом оказалось, что для мутации в гене HBB в 50% и для гена G6PD в 100% случаев мутация была исправлена. Это говорит о том, что система работает на потенциально жизнеспособных зиготах и может быть эффективна.
Важно понимать, что у этой работы есть как технические ограничения: малое количество образцов, отсутствие проверки на способность имплантироваться и нормально развиваться во время беременности, так и этические. В настоящее время эту систему планируют использовать для исследования влияния разных генов и мутаций в них на ранние стадии развития эмбриона, выявления функции разных генов в процессе имплантации эмбриона, что, возможно, позволит повысить эффективность процедур ЭКО.
Источник