Мой способ кодирования информации

Информатика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Примеры кодирования информации:

  • трансляция письменных сообщений с использованием русских букв (АБВГД…ЭЮЯ);
  • запись чисел цифрами (0123456789);
  • использование языка жестов при общении глухонемых людей

Другими словами, переход сообщения из одной формы ее в другую, согласно определенным правилам, и выражает в чем суть кодирования информации.

Информация проходит кодирование в целях:

  • упрощения сбора исходных данных;
  • сокращения объема занимаемой памяти информационными сообщениями;
  • удобства хранения материалов;
  • эффективной обработки и обмена информацией;
  • сокрытия необходимых сведений.

История кодирования информации насчитывает сотни веков. Издавна люди использовали криптограммы (зашифрованные сообщения).

В 19 веке с изобретением телеграфа С. Морзе был придуман и принципиально новый способ шифрования. Телеграфное сообщение передавалось по проводам последовательностью коротких и долгих сигналов (точка и тире).

Вслед за ним Ж. Бодо создал основополагающий в истории современной информатики метод бинарного кодирования информации, который заключается в применении всего двух различающихся электрических сигналов. Кодирование информации в компьютере также подразумевает использование двух чисел.

Разработанная в 1948г. К. Шенноном «Теория информации и кодирования» стала основополагающей в современном кодировании данных.

Кодирование информации в информатике, одна из базовых тем. Понимание для чего нужна процедура кодирования передаваемой информации, каким образом она осуществляется, поможет в изучении принципов работы компьютера.

Способы кодировки

Проанализируем разнообразные виды информации и особенности ее кодирования.

По принципу представления все информационные сведения можно классифицировать на следующие группы:

  • графическая;
  • аудиоинформация (звуковая);
  • символьная (текстовая);
  • числовая;
  • видеоинформация.

Способы кодирования информации обусловлены поставленными целями, а также имеющимися возможностями,методами ее дальнейшей обработки и сохранения. Одинаковые сообщения могут отображаться в виде картинок и условных знаков (графический способ), чисел (числовой способ) или символов (символьный способ).

Соответственно происходит и классификация информации по способу кодирования:

  • символьные сообщения включают знаки дорожного движения, сигналы светофора и т.д.;
  • текстовые данные – это книги, нотные записи, различные документы;
  • всевозможные изображения (фотографии, схемы, рисунки) представляют все многообразие графической информации.

Чтобы расшифровать сообщение, отображаемое в выбранной системе кодирования информации, необходимо осуществить декодирование – процесс восстановления до исходного материала. Для успешного осуществления расшифровки необходимо знать вид кода и методы шифрования.

Самыми распространенными видами кодировок информации являются следующие:

  • преобразование текста;
  • графическая кодировка;
  • кодирование числовых данных;
  • перевод звука в бинарную последовательность чисел;
  • видеокодирование.

Различают такие методы кодирования информации как:

  • метод замены (подстановки) – знаки первоначального сообщения заменяются на соответствующие символы выбранного кодового алгоритма;
  • метод перестановки – символы оригинального текста меняются местами по определенной схеме;
  • метод гаммирования – к исходным обозначениям добавляется случайная последовательность других знаков.

Двоичный код

Самый широко используемый метод кодирования информации – двоичное кодирование. Кодирование данных двоичным кодом применяется во всех современных технологиях.

Двоичный (бинарный) код — последовательность нолей и единиц. Это универсальный способ отображения любых информационных сведений (текстовых сообщений, картинок, звуковых и видеоматериалов). Сведения, закодированные в бинарном коде, очень удобно хранить, обрабатывать и передавать с одного электронного устройства на другое, в чем и заключается преимущества использования двоичного кодирования информации.

Двоичное кодирование информации применяется для различных данных:

  • двоичное кодирование текстовой информации заключается в присвоении буквенным, цифровым и другим обозначениям определенного кода. Он записывается в компьютерной памяти цепочкой из нулей и единиц. Порядок кодирования алфавита в двоичный код с помощью стандарта ASCII является наглядным примером;
  • вид используемой графики влияет на то, каким образом производится двоичное кодирование графической информации;
  • двоичное кодирование звуковой информации происходит после дискретизации звуковой волны и присвоения каждому компоненту соответствующего бинарной цепочки чисел;
  • кодирование двоичным кодом видеоматериалов сочетает принципы работы со звуком и растровыми изображениями.

Обработка графических изображений

Кодирование текстовой, звуковой и графической информации осуществляется в целях ее качественного обмена, редактирования и хранения. Кодировка информационных сообщений различного типа обладает своими отличительными чертами, но, в целом, она сводится к преобразованию их в двоичном виде.

Рисунки, иллюстрации в книгах, схемы, чертежи и т.п. – примеры графических сообщений. Современные люди для работы с графическими данными все чаще применяют компьютерные технологии.

Суть кодирования графической и звуковой информации заключается в преобразовании ее из аналогового вида в цифровой.

Кодирование графической информации – это процедура присвоения каждому компоненту изображения определенного кодового значения.

Способы кодирования графической информации подчиняются методам представления изображений (растрового или векторного):

  1. Принцип кодирования графической информации растровым способом заключается в присвоении бинарного шифра пикселям (точкам), формирующим изображение. Код содержит сведения о цветовых оттенках каждой точки. Примером служат снимки, сделанные на цифровом фотоаппарате.
  1. Векторная кодировка осуществляется благодаря использованию математических функций. Компонентам векторных изображений (точкам, прямым и другим геометрическим фигурам) присваивается двоичная последовательность, определяющая разнообразные параметры. Такая графика зачастую применяется в типографии.


Источник

Многим станет интересно: «В чем суть кодирования графической информации, представленной в виде 3D-изображений?» Дело в том, что работа с трехмерными данными сочетает способы растровой и векторной кодировки.

Кодирование и обработка графической информации различного формата имеет как свои преимущества, так и недостатки.

Метод координат

Любые данные можно передать с помощью двоичных чисел, в том числе и графические изображение, представляющие собой совокупность точек. Чтобы установить соответствие чисел и точек в бинарном коде, используют метод координат.

Метод координат на плоскости основан на изучении свойств точки в системе координат с горизонтальной осью Ox и вертикальной осью Oy. Точка будет иметь 2 координаты.

Если через начало координат проходит 3 взаимно перпендикулярные оси X, Y и Z, то используется метод координат в пространстве. Положение точки в таком случае определяется тремя координатами.

Система координат в пространстве

Перевод чисел в бинарный код

Числовой способ кодирования информации, т.е. переход информационных данных в бинарную последовательность чисел широко распространен в современной компьютерной технике. Любая числовую, символьную, графическую, аудио- и видеоинформацию можно закодировать двоичными числами. Рассмотрим подробнее кодирование числовой информации.

Привычная человеку система счисления (основанная на цифрах от 0 до 9), которой мы активно пользуемся, появилась несколько сотен тысяч лет назад. Работа всей вычислительной техники организована на бинарной системе счисления. Алфавитом у нее минимальный – 0 и 1. Кодировка чисел совершается путем перехода из десятичной в двоичную систему счисления и выполнении вычислений непосредственно с бинарными числами.

Кодирование и обработка числовой информации обусловлено желаемым результатом работы с цифрами. Так, если число вводится в рамках текстового файла, то оно будет иметь код символа, взятого из используемого стандарта. Для математических вычислений числовые данные преобразуются совершенно другим способом.

Читайте также:  Лучшие рецепты засолки сала сухим способом с чесноком

Принципы кодирования числовой информации, представленной в виде целых или дробных чисел (положительных, отрицательных или равных 0) отличаются по своей сути. Самый простой способ перевести целое число из десятичной в двоичную систему счисления заключается в следующем:

  1. число нужно разделить на 2;
  2. если частное больше 1, то необходимо продолжить деление до того момента, пока результат будет равен 0 или 1;
  3. записать результат последней операции и остатки от деления в обратной последовательности;
  4. полученное число и будет являться искомым кодовым значением.

Одна из важнейших частей компьютерной работы – кодирование символьной информации. Все многообразие цифр, русских и латинских букв, знаков препинания, математических знаков и отдельных специальных обозначений относятся к символам. Cимвольный способ кодирования состоит в присвоении определенному знаку установленного шифра.

Рассмотрим подробнее самые распространенные стандарты ASCII и Unicode – то, что применяется для кодирования символьной информации во всем мире.

Фрагмент таблицы ASCII

Первоначально было установлено, что для любого знака отводится в памяти компьютера 8 бит (1 бит – это либо «0», либо «1») бинарной последовательности. Первая таблица кодировки ASCII (переводится как «американский кодовый стандарт обмена сообщениями») содержала 256 символов. Ограниченная численность закодированных знаков, затрудняющая межнациональный обмен данными, привела к необходимости создания стандарта Unicode, основанного на ASCII. Эта международная система кодировки содержит 65536 символов. Закодировать огромное количество всевозможных обозначений стало возможным благодаря использованию 16-битного символьного кодирования.

Кодирование символьной и числовой информации принципиально отличается. Для ввода-вывода цифр на монитор или использовании их в текстовом файле происходит преобразование их согласно системе кодировки. В процессе арифметических действий число имеет совершенно другое бинарное значение, потому что оно переходит в двоичную систему счисления, где и совершаются все вычислительные действия.

Выбирать способ кодирования информации – графический, числовой или символьный необходимо отталкиваясь от цели кодировки. Например, число «21» можно ввести в компьютерную память цифрами или буквами «двадцать один», слово «ЗИМА» можно передать русскими буквами «зима» или латинскими «ZIMA», штрих-код товара передается изображением и цифрами.

Преобразование звука

Компьютерные технологии успешно внедряются в различные сферы деятельности, включая кодирование и обработку звуковой информации. С физической точки зрения, звук – это аналоговый сплошной сигнал. Процесс его перевода в ряд электрических импульсов называется кодированием звуковой информации.

Задачи, которые необходимо решить для успешной оцифровки сигнала:

  1. дискретизировать (разделить аудиоданные на элементарные участки путем измерения колебаний воздуха через одинаковые интервалы времени);
  2. оцифровать (присвоить каждому элементу числовой код).

Преобразование звука: а) аналоговый сигнал; б)дискретный сигнал.

Различают следующие методы кодирования звуковой информации:

  • Метод FM. Суть его сводится к разделению звука аналого-цифровыми преобразователями (АЦП) на одинаковые простейшие элементы, которые в дальнейшем кодируются бинарным кодом. Несовершенство метода FM проявляется в низком качестве звукозаписи из-за потери некоторого объема исходного звукового сообщения.
  • Метод Wave-Table (таблично-волновой) позволяет получить высококачественный продукт, поскольку разработанные таблицы сэмплов (образцов «живых» звуков) позволяют выразить бинарными числами разнообразные параметры поступающего сигнала.

Обработка текста

Текст – осмысленный порядок знаков. С использованием компьютера кодирование и обработка текстовой информации (набор, редактирование, обмен и сохранение письменного текста) значительно упростилось.

Кодирование текстовой информации – присвоение любому символу текста кода из кодировочной системы. Различают следующие стандарты кодировки:

  1. ASCII – первая международная система кодировки, содержащая коды на 256 знаков.
  2. Unicode – расширенный стандарт ASCII, превышающий ее размером в 256 раз.
  3. КОИ-8, СР1251, СР866, ISO – русские таблицы кодировки букв. При этом следует понимать, что документ, закодированный одним стандартом, не будет читаться в другом.

В задачах на кодирование текстовой информации часто встречаются следующие понятия:

  • мощность алфавита;
  • единицы измерения памяти (биты и байты).

Например, мощность алфавита ASCII составляет 256 символов. При этом один знак занимает 8 бит (или 1 байт) памяти, а Unicode – 35536 символов и 16 бит (или 2 байта) соответственно.

Источник

Кодирование информации — основные виды, способы и правила

Информация бывает разных видов, таких как запах, вкус, звук; символы и знаки. В различных отраслях науки, техники и культуры применяются особые формы и методики для кодирования и записи информации.

Рассмотрим, например, персональные компьютеры, которые предназначены для обработки графических изображений, воспроизведения музыки и видеофайлов, организации видео конференций, научных расчетов. Для предоставления данных в виде, понимаемом компьютерами, проводится кодирование информации путём составления специальной модели явления либо объекта. Именно процесс преобразования сообщения в комбинацию символов называется кодированием.

  • Числовой способ — с помощью чисел.
  • Символьный способ — информация кодируется с помощью символов того же алфавита, что и исходящий текст.
  • Графический способ — информация кодируется с помощью рисунков или значков.

Системы счисления делятся на позиционные и непозиционные. Пример непозиционной системы счисления — римская: несколько чисел приняты за основные (например, I, V, X, L, C, D, M), а остальные получаются из основных путем сложения (как VI, VII) или вычитания (как IV, IX). В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

Трактовка понятий

Человеческие мысли выражаются в виде текста, который состоит из слов. Подобное представление информации называется алфавитным, так как основа языка — алфавит. Он считается конечным набором различных знаков любой природы. Их используют для составления сообщений.

Вам известно что для обозначения количества мы пользуемся цифрами, для обозначения звуков на письме буквами. Можно сказать что цифры и буквы это коды. Одна и тажа информация может быть закодирована по разному. Например китайские и японские иероглифы являются символами которыми кодируется буква или слово. Основу любого языка составляет алфавит — конечный набор различных знаков (символов) любой природы, из которых складывается сообщение на данном языке. То есть символизация информации – это описание объектов или явлений с помощью символов того или иного алфавита. Под мощностью алфавита понимают количество символов, составляющий данный алфавит, что в свою очередь определяет количество возможных комбинаций (слов) которые можно составить из символов данного алфавита в соответствии с определенными правилами.

Как правило представления сообщения, подбираются так что бы его передача была как можно быстрее и надежней, а его обработка была как можно более удобной для адресата. Одно и тоже сообщение можно кодировать по разному. Одной систем кодирования является азбука. Можно кодировать и звуки одна из таких систем кодирования — ноты. Хранить можно не только текстовую и звуковую информацию, в виде кодов хранятся и изображения. Если рассмотреть рисунок через увеличительное стекло то видно что он состоит из точек. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки можно запомнить так же в виде чисел. Такие числа могут храниться в памяти компьютера и передаваться на расстояния.

Чтобы зашифровать данные, необходимо знать правила записи кодов (условные обозначения информации). Понятие кодирование связано с преобразованием сообщений в комбинацию символов с учётом кодов. При общении люди используют русский либо другой национальный язык. В процессе разговора код передаётся звуками, а при письменном общении с помощью букв. У водителей или у пилотов обработка информации также осуществляется световыми сигналами, специальнвми символами — знаками.

Читайте также:  Способ есть рис по зернышку

Количество и графическое отображение символов в алфавитах естественных языков сложилось исторически и характеризуется особенностями языка (произносимыми звуками). Например русский алфавит имеет 33 символа, латинский – 26, китайский несколько тысяч.

К основным способам кодирования информации в информатике относятся: числовой, символьный (текстовый), графический. В первом случае используются числа, во втором — символы того алфавита, что и первоначальный текст, в третьем — картинки, рисунки, значки.

Двоичная методика

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. В процессе хранения, обработки и передачи информации в компьютере используется особая двоичная система кодирования, алфавит которой состоит всего из двух знаков «0» и «1». Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Связано это с тем, что в цифровой электронике удобнее всего представлять информацию в виде последовательности электрических импульсов: техническое устройство, безошибочно различающее 2 разных состояния сигнала, оказалось проще создать, чем то, которое бы безошибочно различало 5 или 10 различных состояний. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид. Такое кодирование информации принято называть двоичным, на его основе работают все окружающие нас компьютеры, смартфоны и т.п.

На английском языке используется выражение binary digit либо сокращённо bit (бит). Через 1 бит можно выразить: да либо нет; белое или чёрное; ложь либо истина.

Двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение. В результате любая информация кодируется в компьютерах с помощью последовательностей лишь двух цифр — 0 и 1.

Итак, минимальные единицы измерения информации – это бит и байт. Один бит позволяет закодировать 2 значения (0 или 1). Используя два бита, можно закодировать 4 значения: 00, 01, 10, 11. Тремя битами кодируются 8 разных значений: 000, 001, 010, 011, 100, 101, 110, 111. Из приведенных примеров видно, что добавление одного бита увеличивает в 2 раза то количество значений, которое можно закодировать. 1 байт состоит из 8 бит и способен закодировать 256 значений.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Наряду с битами и байтами используют и большие единицы измерения информации.

  • 1 бит <0,1>;
  • 1 байт = 8 бит;
  • 1 Кбайт = 2 10 байт = 1024 байт;
  • 1 Мбайт = 2 10 Кбайт = 1024 Кбайт = 2 20 байт;
  • 1 Гбайт = 2 10 Мбайт = 1024 Мбайт = 2 30 байт;
  • 1 Тбайт = 2 10 Гбайт = 1024 Гбайт = 2 40 байт.
  • 1 Пбайт = 2 10 Тбайт = 1024 Тбайт = 2 50 байт.

Подробнее о информации в компьютерных системах можно прочтитать в статье Понятие информации. Информатика

Текстовое значение

Кодирование и обработка текстовой информации Уже с 60-х годов прошлого столетия, компьютеры всё больше стали использовать для обработки текстовой информации. Для кодирования текстовой информации в компьютере применяется двоичное кодирование, т.е. представление текста в виде последовательности 0 и 1. Чтобы выразить текст числом, каждая буква сопоставляется с числовым значением. Смысл кодирования: одному символу принадлежит код в пределах 0−255 либо двоичный код от 00000000 до 11111111.

Текстовая информация состоит из символов: букв, цифр, знаков препинания и др. Одного байта достаточно для хранения 256 различных значений, что позво ляет размещать в нем любой из алфавитно-цифровых символов. Первые 128 сим волов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 0000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В мировой практике для кодирования текста при помощи байтов используются разные стандарты. Самым распространенным, но не единственным видом кодирования является код ASCII. В соответствии с этим стандартом, знаки в пределах 0−32 соответствуют операциям, а 33−127 — символам из латинского алфавита, знакам препинания и арифметики. Для национальных кодировок применяются значения 128−255. В разных национальных кодировках одному и тому же коду соответствуют различные символы. К примеру, существует 5 кодировочных таблиц для русских букв (Windows, MS-DOS, Mac, ISO, КОИ – 8). Поэтому тексты созданные в одной кодировке не будут правильно отображаться в другой.

Первоначально в кодах ASCII было 7 бит информации. В последующем ее расширили до 8-битной (1 байт) кодировки. Обьем 7-битного кодирования по сравнению с 8-битным в 2 раза меньше. 2 7 =128 8 =256.

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица СР1251, которая используется в операционных системах семейства Windows фирмы Microsoft. Во всех современных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В конце прошлого века появился новый международный стандарт Unicode, в котором один символ представляется двухбайтовым двоичным кодом. Применение этого стандарта – продолжение разработки универсального международного стандарта, позволяющего решить проблему совместимости национальных кодировок символов. С помощью данного стандарта можно закодировать 65536 различных символов.

Растровое изображение

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную. Мы рассмотрим самую распространенный, растровый формат кодирования изображения.

Графические данные на мониторе представляются в качестве растрового изображения. Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Каждому пикселю присвоен особый код, в котором хранится информация об оттенке пикселя. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла.

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Что делать, если рисунок цветной? Формирование цветного изображения на мониторе осуществляется путём смешивания 3-х основных цветов: синего, красного и зелёного. В этом случае для кодирования цвета пикселя уже не обойтись одним битом. В системе кодирования цветных изображений RGB (R — красный, G — зеленый и B — синий) яркость каждой цветовой составляющей (или, как говорят, каждого канала) кодируется целым числом от 0 до 255. При этом код цвета — это тройка чисел (R,G,B), яркости отдельных каналов. Цвет (0,0,0) — это черный цвет, а (255,255,255) — белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 0016 до FF16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего — как #0000FF.

Всего есть по 256 вариантов яркости каждого из трех цветов. Это позволяет закодировать 256 3 = 16 777 216 оттенков, что более чем достаточно для человека. Так как 256 = 2 8 , каждая из трех составляющих занимает в памяти 8 бит или 1 байт, а вся информация о каком-то цвете — 24 бита (или 3 байта). Эта величина называется глубиной цвета.

Звуки и их разрядность

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

В каждом современном компьютере предусмотрена звуковая плата, колонки, микрофон. С их помощью производится запись, сохраняются и воспроизводятся звуки — волны с определённой частотой и амплитудой. Программное обеспечение для компьютеров преобразовывает звуковые сигналы в последовательность нулей и единиц. Для этого использунтся аудиоадаптер или звуковая плата. Устройство подключается к компьютеру с целью преобразования электроколебаний звуковой частоты в двоичный код. Процесс преобразования выполняется как при вводе звуков в компьютер так и при обратном их преобразовании.

Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Компьютер — устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс — воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).

В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени, или, как говорят, «временная дискретизация».

Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового звукового сигнала.

Глубина кодирования звука — это количество бит, используемое для кодирования различных уровней сигнала или состояний. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней громкомти, который сможет распознать компьютер будет: N = 2 16 = 65536.

Частота дискретизации- это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество и точность процедуры двоичного кодирования. Измеряется в герцах (Гц).

Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду — 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 196 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Достаточно высокое качество звучания достигается при частоте дискретизации 44 кГц и глубины кодирования звука, равной 16 бит.

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM ( Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Подробнее о свойствах звука можно прочитать в статье Звук

Машинные команды

В вычислительных машинах, включая компьютеры, предусмотрена программа для управления их работой. Все команды кодируются в определённой последовательности с помощью нулей и единиц. Подобные действия называются машинными командами (МК).

Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операции или действия. Каждая команда содержит элементы, определяющие:

  • указание на то, какие действия должен сделать микропроцессор (ответ па этот вопрос дает часть команды, которая называется кодом операции (КОП));
  • указание на объекты, над которыми надо провести какие-то действия (эти элементы машинной команды называются операндами);
  • указание на способ действия (эти элементы называются типами операндов).

Структура машинной команды состоит из операционной и адресной части. В операционной части содержится код операции. Чем длиннее операционная часть, тем большее количество операций можно в ней закодировать.

В адресной части машинной команды содержится информация об адресах операндов. Это либо значения адресов ячеек памяти, в которых размещаются сами операнды (абсолютная адресация), либо информация, по которой процессор определяет значения их адресов в памяти (относительная адресация). Абсолютная адресация использовалась только в машинах 1 и 2-го поколений. Начиная с машин 3-го поколения, наряду с абсолютной используется относительная адресация.

Подробнее о поколениях компьютеров смотрите в статье История развития компьютеров

Заключение

Итак, кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки (Цифровое кодирование, аналоговое кодирование, таблично-символьное кодирование, числовое кодирование). Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием, процесс восстановления сообщения из комбинации символов называется декодированием.

Кодирование информации — процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Информацию необходимо представлять в какой — либо форме, т.е. кодировать. Для представления дискретной информации используется некоторый алфавит. Однако однозначное соответствие между информацией и алфавитом отсутствует. Другими словами, одна и та же информация может быть представлена посредством различных алфавитов. В связи с такой возможностью возникает проблема перехода от одного алфавита к другому, причём, такое преобразование не должно приводить к потере информации.

Источник

Читайте также:  Имьюн бустер гербалайф способ применения
Оцените статью
Разные способы