Морозостойкость способы ее определения

Морозостойкость строительных материалов

Морозостойкость строительных материалов –способность материала, насыщенного водой, выдерживать многочисленное попеременное замораживание, а также оттаивание без значительного уменьшения прочности и без визуальных обнаруживаемых признаков разрушения. Степень морозостойкости определяется количеством циклов заморозки/оттаивания, которые проводят в лабораторных условиях.

Разрушение происходит в связи с тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно до 9 %. Наибольшее расширение воды при переходе в лед наблюдается при температуре — 4 °C; дальнейшее понижение температуры не вызывает увеличения объема льда.

От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и всесторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда примерно на 9% (плотность воды равна 1, а льда —0,917). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа. Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения.

При насыщении пористого материала в воде в основном заполняются водой макрокапилляры, микрокапилляры при этом заполняются водой частично и служат резервными порами, куда отжимается вода в процессе замораживания.
При работе пористого материала в атмосферных условиях (наземные конструкции) водой заполняются в основном микрокапилляры за счет сорбции водяных паров из окружающего воздуха; крупные же поры и макрокапилляры являются резервными. Следовательно, морозостойкость пористых материалов определяется величиной и характером пористости и условиями эксплуатации изготовленных из них конструкций. Она тем выше, чем меньше водопоглощение и больше прочность материала при растяжении. Учитывая неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у пористых материалов, имеющих объемное водопоглощение не более 80 % объема пор. Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.
Морозостойкость характеризуется числом циклов попеременного замораживания при -15, -17 °С и оттаивания в воде при температуре около 20 °С. Выбор температуры замораживания не выше -15, -17 °С вызван тем, что при более высокой температуре вода, находящаяся в мелких порах и капиллярах, не может вся замерзнуть. Число циклов, которые должен выдерживать материал, зависит от условий его будущей службы в сооружении, климатических условий. По числу выдерживаемых циклов попеременного замораживания, и оттаивания (степени морозостойкости) материалы подразделяются на марки (Мрз) 10, 15, 25, 35, 50, 100, 150, 200 и более.

Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов в результате выкрашивания и расслаивания не превышает 5 %, а прочность снижается не более чем на 15 % (для некоторых материалов на 25 %).

Для определения морозостойкости иногда используют ускоренный метод, например, с помощью сернокислого натрия. Кристаллизация этой соли из насыщенных паров при ее высыхании в порах образцов воспроизводит механическое действие замерзающей воды, но в более сильной степени, так как образующиеся кристаллы крупнее (значительное увеличение объема). Один цикл таких испытаний приравнивается 5-10 и даже 20 циклам прямых испытаний замораживанием. О морозостойкости материала можно косвенно судить по величине коэффициента размягчения. Большое понижение прочности вследствие размягчения материала (больше 10 %) указывает, что в материале есть глинистые или другие размокающие частицы, что отрицательно сказывается и на морозостойкости материала.

При выборе марки материала по морозостойкости учитывают вид строительной конструкции, условия ее эксплуатации и климат в зоне строительства. Климатические условия характеризуют среднемесячной температурой наиболее холодного месяца и числом циклов попеременного похолодания и потепления по данным многолетних метеорологических наблюдений. Морозостойкость легких бетонов, кирпича, керамических камней для наружных стен зданий находится обычно в пределах 15-35, бетона для строительства мостов и дорог от 50 до 200, для гидротехнических сооружений — до 500 циклов.

От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды.

Источник

Способ определения морозостойкости строительных материалов

Способ определения морозостойкости строительных материалов относится к области испытаний строительных изделий, в частности кирпича, камней силикатных и керамических. Способ определения морозостойкости строительных материалов включает насыщение образцов в воде или растворе хлористого натрия, поверхностное цикличное замораживание и оттаивание образцов и визуальную оценку морозостойкости, при этом замораживание осуществляют в течение 5-10 мин, а оттаивание 3-5 мин 0,1-0,2 части испытуемой поверхности, смену режимов замерзания и оттаивания ведут со скоростью 30-40 град/мин, а образцы погружают в воду и раствор хлористого натрия на 90-95% от их объема. Изобретение обеспечивает сокращение длительности испытаний, снижение трудоемкости, повышение достоверности результатов испытаний.

Изобретение относится к области испытания строительных материалов, в частности к определению их морозостойкости.

Известен способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, замораживание образцов в воздушной среде при температуре минус 20 o C в течение 2 — 4 ч и оттаивание образцов в водной среде или растворе хлористого натрия при температуре 20 o C в течение 1,5 — 2 ч, регистрацию числа циклов замораживания — оттаивания до достижения 25%-ной потери прочности образцов или 5%-ной потери массы или до появления внешних признаков разрушения, по которым судят о морозостойкости строительных материалов (1).

Читайте также:  Индустриальный способ строительства жилья

Недостатком способа является значительная трудоемкость и продолжительность испытания и необходимость применения сложного и громоздкого оборудования.

Известен способ ускоренного определения морозостойкости строительных материалов путем насыщения водой образцов с вмонтированным в него стальным стержнем, замораживания и оттаивания и фиксации резкого возрастания начального электрического потенциала стального стержня, по которому и судят о морозостойкости материала (2).

Известен способ определения морозостойкости образцов строительного материала по соотношению структурной и прочностной характеристик, отличающийся тем, что за структурную характеристику принимают капиллярную и контракционную пористости, а за прочностную — работу разрушения образцов (3).

Недостатками известных способов (2, 3) является косвенность методов определения морозостойкости и вследствие этого невысокая точность результатов.

Кроме того недостатками способов (1, 2, 3) является то, что определения морозостойкости в условиях прямого объемного замораживания не соответствует фактическим эксплуатационным условиям строительного материала, подвергающегося попеременному воздействию отрицательных и положительных температур только с одной стороны. Поэтому результаты испытания строительного материала приводят к большому разбросу значений морозостойкости материала.

Известен способ определения морозостойкости строительных материалов путем одностороннего замораживания в морозильной камере в специальном контейнере, обеспечивающем отвод тепла с одной стороны испытуемых образцов, оттаивания в ванне с водой, определения структурной и прочностной характеристики образцов с последующим расчетом морозостойкости по формуле (4).

Известен способ определения морозостойкости строительных материалов, включающий насыщение образца водой, путем циклического ввода под давлением порций воды, рассчитанных по эмпирической формуле (5).

Недостатками известных способов (4, 5) является недостаточно высокая достоверность результатов испытания из-за применения в них расчетных формул с использованием эмпирических коэффициентов.

Наиболее близким к предлагаемому является способ определения морозостойкости, включающий одностороннее замораживание кладки из кирпича или камней при температуре воздуха — 15 — 20 o C в течение 8 ч, оттаивание замороженной стороны кладки дождеванием при температуре воды 15 — 20 o C в течение 8 ч, регистрацию числа циклов замораживания и оттаивания до появления на поверхности кладки видимых признаков разрушения (шелушение, расслоение, растрескивание, выкрашивание), либо по потере массы и прочности, по которым судят о морозостойкости образцов строительных материалов (6).

Недостатками известного способа является его высокая трудоемкость, стоимость и большая продолжительность испытания, что не позволяет осуществлять оперативный контроль выпускаемой продукции, значительные энергетические затраты на создание условий замораживания.

Технический результат предлагаемого изобретения — сокращение длительности испытания, снижение трудоемкости, повышение достоверности результатов испытаний.

Технический результат достигается тем, что в известном техническом решении, включающем предварительное насыщение образцов в воде или растворе хлористого натрия, одностороннее цикличное замораживание и оттаивание образцов, и визуальную оценку морозостойкости, ведут направленное, точечное замораживание в течение 5 — 10 мин и оттаивание в течение 3 — 5 мин 10 — 20% открытой поверхности испытываемых образцов, причем смену режимов замораживания и оттаивания осуществляют со скоростью 30 — 40 o в минуту, а образцы погружают в воду или раствор хлористого натрия на 90 — 95% их объема.

Способ осуществляли следующим образом. Образцы, предназначенные для испытания на морозостойкость, предварительно насыщали в воде или растворе хлористого натрия. Затем устанавливали три образца Т-образно в емкость лицевой поверхностью вверх. После этого заливали в емкость воду или раствор хлористого натрия до погружения образцов на 90 — 95% их объема. Потом направленным потоком холодного воздуха при температуре минус 15 — 20 o C обрабатывали стык трех образцов, т.е. 10 — 20% их поверхности в течение 5 — 10 мин. Затем со скоростью 30 — 40 o C в мин переходили на режим нагревания и обрабатывали тот же стык теплым потоком воздуха с температурой 15 — 20 o C в течение 3 — 5 мин и регистрировали число циклов замораживания и оттаивания до появления видимых признаков разрушения (расслоения, растрескивания, выкрашивания, шелушения), по которым судили о морозостойкости строительных материалов.

Использование в предлагаемом техническом решении приема точечного, направленного замораживания в течение 5 — 10 мин и оттаивания в течение 3 — 5 мин 10 -20% открытой поверхности испытываемых образцов позволяет создать в короткое время условия протекания процессов близких к фактическим при эксплуатации.

За счет резкого (30 — 40 o C в мин) изменения режимов замораживания и оттаивания создается напряженное состояние в порах материала, обусловливающие деструктивные процессы, а именно разрыхление структуры, интенсификации микротрещинообразования и соответственно увеличение проницаемости.

Погружение образцов в воду или раствор хлористого натрия на 90 — 95% от объема образца обеспечивает условия постоянной миграции влаги к открытой лицевой поверхности испытываемого образца через капилляры и микротрещины.

Все эти приемы позволяют проводить скоростное определение морозостойкости, близкое к фактическому.

Незначительные энергетические затраты, низкая трудоемкость, доступность и достоверность результатов позволяют осуществлять текущий контроль выпускаемой продукции и своевременно выявлять нарушения технологического процесса.

Источники информации 1. ГОСТ 10090.1-95, ГОСТ 10090.2-95 «Бетоны. Методы определения морозостойкости.

2. А.С. СССР N 482676 М. кл. C 01 N 33/38, 1975 г.

3. А.С. СССР N 435621 М. кл. C 01 N 25/02, 1975 г.

4. А.С. СССР N 828849 М. кл. C 01 N 33/38, 1982 г.

5. А.С. СССР N 1255921 М. кл. C 01 N 33/38, 1986 г.

Читайте также:  Цитаты их специфика отличие от других способов передачи чужой речи основная сфера употребления цитат

6. ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения и водопоглощения, плотности и контроля морозостойкости.

Способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, цикличное замораживание и оттаивание открытой поверхности образцов и визуальную оценку морозостойкости, отличающийся тем, что замораживают и оттаивают 10 — 20% поверхности испытуемого образца в течение соответственно 5 — 10 мин и 3 — 5 мин, а смену режимов замораживания и оттаивания ведут со скоростью 30 — 40 град. /мин, при этом образцы погружают в воду или раствор хлористого натрия на 90 — 95% от их объема.

Источник

Контрольная работа: Характеристика и применение строительных материалов

1. Что такое морозостойкость и каковы методы её определения? Какие требования по морозостойкости предъявляют к керамическим стеновым и облицовочным материалам?

2. Что представляют собой пустотелые стеклянные блоки? Укажите область применения?

3. Что представляет собой строительный гипс и где его целесообразно применять?

4. Кратко опишите методы испытания бетона в конструкциях без его разрушения.

5. Охарактеризуйте акустические изделия «акмигран» и «акминит».

1. Что такое морозостойкость и каковы методы её определения?

Какие требования по морозостойкости предъявляют к керамическим стеновым и облицовочным материалам?

Морозостойкость – свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку материала по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без снижения прочности на сжатие более 15%; после испытания образцы не должны иметь видимых повреждений – трещин, выкрашивания (потеря массы не более 5%). От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды. Марка по морозостойкости устанавливается проектом с учетом вида конструкции, условий ее эксплуатации и климата. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца и числом циклов попеременного замораживания и оттаивания по данным многолетних метеорологических наблюдений. Легкие бетоны, кирпич, керамические камни для наружных стен обычно имеют морозостойкость 15, 25, 35. однако бетон, применяемый в строительстве мостов и дорог, должен иметь марку 50, 100 и 200, а гидротехнический бетон – до 500.Воздействие на бетон попеременного замораживания и оттаивания подобно многократному воздействию повторной растягивающей нагрузки, вызывающей усталость материала. Испытание морозостойкости материала в лаборатории проводят на образцах установленной формы и размеров (бетонные кубы, кирпич и т.п.) перед испытанием образцы насыщают водой. После этого их замораживают в холодильной камере от -15 до -20С, чтобы вода замерзла в тонких порах. Извлеченные из холодильной камеры образцы оттаивают в воде с температурой 15-20С, которая обеспечивает водонасыщенное состояние образцов. базовые — первый (для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий) и второй (для бетонов дорожных и аэродромных покрытий); ускоренные при многократном замораживании и оттаивании — второй и третий;ускоренные при однократном замораживании — четвертый (дилатометрический) и пятый (структурно-механический). Для оценки морозостойкости материала применяют физические методы контроля и прежде всего импульсный ультразвуковой метод. С его помощью можно проследить изменение прочности или модуля упругости бетона в процессе циклического замораживания и определить марку бетона по морозостойкости в циклах замораживания и оттаивания, число которых соответствует допустимому снижению прочности или модуля упругости.

2. Что представляют собой пустотелые стеклянные блоки? Укажите область применения?

Блоки стеклянные пустотелые распространяется на стеклянные пустотелые сварные блоки, предназначенные для заполнения вертикальных световых проемов, а также для устройства самонесущих .наружных и внутренних светопропускающих ограждений в зданиях и сооружениях различного назначения. Блоки всех типов могут изготовляться бесцветными или цветными. При изготовлении бесцветных блоков допускаются оттенки желтоватого, голубоватого или зеленоватого тона. Блоки должны быть термостойкими и выдерживать перепад температур не менее 30° С без каких-либо признаков разрушения. По механической прочности блоки должны соответствовать следующим требованиям: предел прочности при сжатии — не менее 15 KFJCM2; сопротивление ударному воздействию — не менее 8 кГ см. Для изготовления панелей иногда применяют стеклянные блоки.

3. Что представляет собой строительный гипс и где его целесообразно применять?

Строительный гипс — вяжущая смесь, которую получают путем термической обработки гипсового камня до полугидрата сульфата кальция. Строительный гипс, это незаменимая в строительстве вещь. Его используют для изготовления строительных блоков, при строительных работах, а также строительный гипс обеспечивает качественную звука и теплоизоляцию при внутренних штукатурных работах.

4. Кратко опишите методы испытания бетона в конструкциях без его разрушения

Качество бетонных и железобетонных изделий и конструкций в значительной степени зависит от эффективного и действенного контроля прочности и однородности бетона, защитного слоя бетона и расположения арматуры, напряжений в арматуре предварительно напряженных железо-бетонных конструкций. Для неразрушающего контроля (НК) прочности бетона используются приборы, основанные на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания. При обследовании монолитных конструкций и больших массивов бетона применение ударно-импульсных и ультразвуковых приборов должно сочетаться с испытаниями бетона методами отрыва со скалыванием, скалывания ребра или отбора образцов (кернов). При выборе методов НК и приборов для проведения испытаний бетона пользователь должен знать их особенности и рекомендуемые области применения. Контроль прочности ударными и ультразвуковыми методами ведется в поверхностных слоях бетона (кроме сквозного УЗ-прозвучивания), в связи с чем состояние поверхностного слоя может оказывать существенное влияние на результаты контроля. В случаях воздействия на бетон агрессивных факторов (химических, термических или атмосферных) необходимо выявить толщину поверхностного слоя с нарушенной структурой.

Подготовка бетона таких конструкций для испытаний неразрушающими методами заключается в удалении поверхностного слоя на участке контроля и зачистке поверхности наждачным камнем. Прочность бетона в этих случаях необходимо определять преимущественно приборами, основанными на методах местных разрушений, либо путем отбора образцов. При использовании же ударно-импульсных и ультразвуковых приборов контролируемая поверхность должна иметь шероховатость не более Ra 25, а градуировочные характеристики приборов требует уточнения.

5. Охарактеризуйте акустические изделия «акмигран» и «акминит»

Акмигран облицовочный материал в виде плиток размером 300х250х20мм. Обычно белого цвета, имеет пористую лицевую поверхность различной фактуры. Изготовляется из гранулированной минеральной ваты и асбестового волокна с крахмалом в качестве связующего. Поучают акмигран прессованием..Рассматриваются на примере акустических минераловатных плит «Акмигран», «Акминит» и МВП, панелей фирмы «PAROC». Акустические минераловатные плиты «Акмигран» представляют собой звукопоглощающие плиты, изготавливаемые из гранулированной минеральной ваты с крахмальным связующим путём формования и последующей сушки изделий. Минеральную вату гранулируют и получают зёрна размером 2 — 15 мм с объёмной массой около 100 кг/кв.м. Связующее, состоящее из крахмала и каолина, затворяют холодной водой и заваривают в мешалке с нагревом смеси до 85 — 90°С. В связующее вводят небольшое количество борной кислоты или буры, являющихся стабилизаторами массы. Формовочную смесь из гранулированной ваты и пастообразного связующего, взятых в отношении 1:3 по массе, готовят в шнековом смесителе. Влажность смеси 300 — 350 %. Формовку полусухой смеси осуществляют двумя транспортными лентами, движущимися с разной скоростью. Это позволяет получить изделия с небольшими трещинами, что повышает их звукопоглощающие свойства. Сушку производят при температуре 140°С в течение 16 — 18 часов. Затем изделия шлифуют, разрезают и окрашивают.

Размеры плит «Акмигран» 600х600х20 мм. Их средняя плотность 350 — 400 кг/куб.м, R(изг)- больше или равно 0,5 Мпа, коэффициент звукопоглощения 0,7 — 0,9. Плиты обладают малой гигроскопичностью и являются негорючим материалом. Акустические минераловатные плиты «Акминит» по технологии изготовления и свойствам похожи на плиты «Акмигран». В отличие от последних, формовку плит «Акминит» осуществляют из смеси с большей влажностью, которая достигает 400 % (полумокрый способ), путём уплотнения её на ленточном транспортёре прессующими валиками, с отжатием некоторого количества воды.Офактуривание плит после сушки производят разными приёмами. Для обеспечения шероховатой поверхности плиты обрабатывают абразивными материалами, просверливают отверстия, вдавливают в поверхность плит зубцы с затупленными гранями, что приводит к образованию трещин и т.д. Полумокрый способ изготовления плит несколько сложнее в смысле контроля за процессом формовки, чем полусухой, но в то же время, имеет и ряд преимуществ. Изделия получаются с несколько большей прочностью (R(изг) до 1,5 МПа), ниже расход связующего, короче срок сушки, изделия меньше подвержены короблению; можно получать более целесообразные в акустическом и более выразительные в декоративном отношении фактуры. Акустические минераловатные плиты (МВП).Эти изделия отличаются по технологии изготовления от предыдущих видов плит тем, что формуются «мокрым» способом из пульпы на длинносетчатых отливных машинах с вакуумированием, как это имеет место при производстве древесноволокни- стых плит. Более равномерное распределение связующего в плитах МВП позволяет повысить прочность при изгибе до 2,0 — 2,5 Мпа. Офактуривание изделий осуществляется теми же приёмами, что и плит «Акминит».

Определить коэффициент размягчения плотного известняка, если прочность его образца – куба в сухом состоянии – 120 МПа, а в насыщенном водой состоянии – 105 МПа. Сделать вывод о водостойкости данного материала.

Кр =

где Rнас — предел прочности материала в насыщенном водой состоянии,

Rсух — предел прочности сухого материала

Кр = = 0,875 кгс/см2

Коэффициент размягчения материалов колеблется от 0 (необожженные керамические материалы) до 1 (стекло, сталь, битум). Материалы с коэффициентом размягчения не менее 0,8 относятся к водостойким. Их разрешается применять в строительных конструкциях, возводимых в воде, и в местах с повышенной влажностью. Сохраняет прочность при придельном водонасыщении.

Рассчитать производственный состав бетонной смеси по массе и вычислить расход материалов на замес бетоносмесителя с вместимостью барабана 425 л при следующих данных: бетон класса В10 (марка 150). Подвижность бетонной смеси – 4см, активность шлакопортландцемента – 340 кгс/см2, песок речной, наибольшая крупность заполнителя (известняковый щебень) – 40 мм.

Осадка конуса = 4см

Шлакопортландцемент = 340 кгс/см2

8ист = 3,0 г/см3 = 3000 кг/м3

8насщ = 1,0 г/см3 =1000 кг/м3

8ист =2,6 г/см3 = 2600 кг/м3

8насщ = 1,5 г/см3 = 1500 кг/м3

8ист = 2,5 г/см3 = 2500 кг/см2

8насщ = 1,4 г/см3 = 1400 кг/м2

Расчёт ведём на 1м3 бетона

1. Vп + Vц+ Vв + Vщ = 1

3. Определяем водоцементное соотношение по следующей формуле:

В/Ц =

В/Ц = = 0,809

Ц = = 218 (кг)

5. Щ = = 1256,28

0,44*1,26 + 1

1,4 2,5

6. Определяем расход песка:

П = [ 1000-( + 175 + )] * 2,6 = 950,4612 (кг)

7. Рассчитываем состав бетонной смеси по массе:

175 950,46 1256,28

Ц:В:П:Щ = 1: : : = 1 : 0,80 : 4,35 : 5,76

8.Расчитываем состав бетонной смеси по объёму:

Vц : Vв : Vп : Vщ = 1 :

1 : : : = 1 : 0,80 : 5,06 : 4,87

Vц = = 218 л/м3

В = = 1,74

950,46 218 1256,28

+ +

1,5 1 1,4

9. Определяем расход заполнителей смеси для бетонирования:

Источник

Читайте также:  Подростковая преступность способы борьбы
Оцените статью
Разные способы
Название: Характеристика и применение строительных материалов
Раздел: Рефераты по строительству
Тип: контрольная работа Добавлен 21:27:28 02 ноября 2009 Похожие работы
Просмотров: 2307 Комментариев: 14 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать