Морфологический способ отражения событий производится с помощью дерева

Метод построения деревьев событий

Метод построения деревьев событий – это графический способ прослеживания последовательности отдельных возможных инцидентов, например отказов или неисправностей каких-либо элементов технологического процесса или системы, с оценкой вероятности каждого из промежуточных событий и вычисления вероятности конечного события, приводящего к убыткам.

Дерево событий строится, начиная с заданных исходных событий, называемых инцидентами. Затем прослеживаются возможные пути развития последствий этих событий по цепочке причинно-следственных связей в зависимости от отказа или срабатывания промежуточных звеньев системы.

Построение дерева событий позволяет последовательно проследить за последствиями каждого возможного исходного события и вычислить максимальную вероятность главного (конечного) события от каждого из таких инцидентов. Основное при этом – не пропустить какой-либо из возможных инцидентов и учесть все промежуточные звенья системы.

Конечно, такой анализ может дать достоверный результат ве­роятности главного события только в том случае, если достоверно известны вероятности исходных и промежуточных событий. Но это и непременное условие любого вероятностного метода.

Анализ риска может происходить и в обратную сторону — от известного последствия к возможным причинам. В этом случае мы получим одно главное событие у основания дерева и множество возможных причин (инцидентов) в его кроне. Такой метод называ­ется деревом отказов и фактически представляет собой инверсию рассмотренного здесь дерева событий. Оба метода являются вза­имно дополняющими друг друга.

Метод «События — последствия»

Метод «События — последствия» (СП-метод) — это тот же метод деревьев событий, но только без ис­пользования графического изображения цепочек событий и оценки вероятности каждого события. По существу, это критический ана­лиз работоспособности предприятия с точки зрения возможных неисправностей или выхода из строя оборудования, который на этапе проектирования широко используется в промышленности. Основная идея — расчленение сложных производственных систем на отдельные более простые и легче анализируемые части. Каждая такая часть подвергается тщательному анализу с целью выявить и идентифицировать все опасности и риски.

В рамках рассматриваемого метода процесс идентификации риска разделяется на четыре последовательных этапа, на каждом из которых следует ответить на свой ключевой вопрос:

1-й этап — каково назначение исследуемой части установки или процесса?

2-й этап — в чем состоят возможные отклонения от нормаль­ного режима работы?

3-й этап — в чем причины отклонений?

4-й этап — каковы последствия отклонений?

Сначала следует выделить одну из частей установки или процесса и определить ее назначение. Очевидно, что это ключевой момент, поскольку, если назначение установлено неточно, то и от­клонения параметров от нормального режима работы нельзя уста­новить точно. Исследование выполняется последовательно для каждой части установки. В целях обеспечения достоверности и полноты анализа необходимо, чтобы такая работа выполнялась группой специалистов-практиков, а не одним человеком.

После того как определены назначение и условия нормально­го функционирования всех частей установки или процесса, необ­ходимо перечислить возможные отклонения параметров от нормальных проектных значений. Перечень отклонений — это и есть, по существу, основное ядро исследований. Чтобы структу­рировать перечень отклонений, используются специальные клю­чевые слова.

Следующий шаг — составление перечня причин каждого от­клонения. Необходимо перечислить все возможные причины, а не только наиболее вероятные или те, которые имели место в про­шлом.

И, наконец, составляется перечень последствий возможных отклонений параметров и режимов. Анализ последствий позволяет разработать различные меры безопасности. Эти меры часто начинают осуществляться уже в процессе анализа риска, не дожидаясь, пока закончится все исследование.

Преимущества СП-метода можно кратко сформировать в виде следующих выводов.

Читайте также:  Домашний способ избавиться от глистов

1. Возможные риски выявляются очень детально. Маловероятно, что при таком подходе можно что-либо существенное упустить, при условии, что исследование выполняется компетентными специалистами.

2. Метод позволяет также подробно проанализировать отдельные части или секции сложной системы, что едва ли можно достичь без предварительного структурирования.

Главный недостаток метода заключается в значительных за­тратах времени на проведение полного комплекса исследований. Причем это не только затраты времени риск-менеджера, но и тех специалистов, которые привлекаются к работе. В результате по­добные исследования обходятся довольно дорого.

Второй недостаток связан с методологией анализа. Для того чтобы нарисовать схему установки, часто ее необходимо упростить. Но при этом упускаются некоторые детали, так что всегда существует опасность исключить из рассмотрения некоторые аспекты риска.

Источник

Методика количественного анализа безопасности с помощью дерева отказов

Методика количественного анализа безопасности с помощью дерева отказов

Событие — это авария, травма, отказ от какого-то элемента или устройства.

Частота этих событий связана с количеством работающих и продолжительности работы. Частота событий трактуется как вероятность, лежащая между 0 и 1.

Дерево отказов — разновидность графа. Строится от начального события , которое является аварией, несчастным случаем.

1. Нормальные — события характеризующие ожидаемый (нормальный) ход рассматриваемого процесса. Например работник пришел и включил станок, либо при аварии какого-то устройства включается резервное устройство.

2. Если нормальное событие не появляется определенное время оно рассматривается как отказ.

— первичный (событие вызванное особенностями самого элемента системы, например, его износом или производственным дефектом);

— вторичный (событие вызванное внешними причинами (отказ других элементов, отклонение условий внешней среды и т.д.);

— ошибочная команда. Это неправильный сигнал управления, ошибочные действия оператора, сигналы помех.)

3. Исходное событие. В данном случае может выступить либо нормальное событие , либо отказ. Проявляется на элементарном уровне ( на уровне элементов).

Элемент — это наименьшее анализируемое составная часть системы. В качестве исходных событий ( отказов) могут выступать повреждения , отказы элементов, ошибки человека, отклонения в условиях окружающей Среды.

4. Головное событие — событие на вершине дерева отказов, которое затем анализируется с помощью остальной части дерева.

5. Основное событие — результирующий отказ, выводящий машину или человека из работоспособного состояния.

Пример. Работа на заточном станке. Возможные травма-опасности:

1) Травмы пальцев и кисти руки.

2) Травма локтевой части руки.

3) Попадание одежды в станок.

4) Попадание металлической (образиной) крошки в глаз.

5) Перегрузка двигателей и пожар.

6) Неполадки с электропроводкой и электросистемой, в результате — поражение током.

Любое событие можно представить в виде логической функции:

При построении дерева каждому событию присваивается определенная вероятность.

P с = P д *Pe*Pf*Pg

Для большого числа событий удобно использовать формулы:

тогда вероятность запишется как произведение:

если “или”: Т=А1+А2+А3. +Аn, тогда

Исходным выходом является определение вероятности НС, т.е. Р(НС)!

Источник

Морфологический способ отражения событий производится с помощью дерева

ГОСТ Р МЭК 62502-2014

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНАЛИЗ ДЕРЕВА СОБЫТИЙ

Risk management. Event tree analysis

Дата введения 2015-12-01

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (АО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в разделе 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 10 «Менеджмент риска»

4 Настоящий стандарт идентичен международному стандарту МЭК 62502:2010* «Аналитические методы надежности. Анализ дерева событий (ETA)» (IEC 62502:2010 «Analysis techniques for dependability — Event tree analysis (ETA)»).

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (подраздел 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправокв ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользованияна официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

В настоящем стандарте установлены основные принципы метода анализа надежности называемого «Анализ дерева событий» (ЕТА). Этот метод используют также для анализа риска и безопасности. Основные принципы метода установлены в 1960 г. Метод ЕТА впервые был применен для анализа объектов атомной промышленности в США. Затем он получил широкое распространение, как метод анализа надежности и риска и применялся для анализа надежности ядерных установок, аэрокосмических систем, химических процессов, установок по добыче нефти и газа, транспортных систем и др.

В противоположность другим методам анализа надежности, например Марковскому методу, ЕТА основан на относительно простых математических выводах. Однако применение метода требует наличия специальных навыков, опыта и внимательности. Кроме того обычно полезно использовать взаимосвязь анализа дерева неисправностей (FTA) с количественным и качественным анализом дерева событий.

В настоящем стандарте установлены общие принципы ЕТА и показано его применение для анализа параметров систем, относящихся к надежности и риску.

1 Область применения

В настоящем стандарте установлены основные принципы метода ЕТА (анализ дерева событий) и приведено руководство по моделированию последствий инициирующих событий, а также качественному и количественному анализу показателей надежности и риска.

ЕТА — Event tree analysis.

В настоящем стандарте по отношению к анализу дерева событий установлены:

a) основные термины, используемые обозначения и способы графического представления;

b) этапы процедуры построения дерева событий;

Читайте также:  Способы речевого воздействия личность

c) предположения, ограничения и преимущества анализа ЕТА;

d) взаимосвязь ЕТА с другими методами анализа надежности и риска и области применения метода;

e) рекомендации по определению качественных и количественных оценок;

f) практические примеры применения метода.

Настоящий стандарт применим во всех случаях, когда необходимо определить оценки показателей надежности и риска.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты*:

* Таблицу соответствия национальных стандартов международным см. по ссылке. — Примечание изготовителя базы данных.

МЭК 60050-191:1990 Международный электротехнический словарь. Глава 191: Надежность и качество обслуживания (IEC 60050-191:1990, International electrotechnical vocabulary; chapter 191: dependability and quality of service)

МЭК 61025:2006 Анализ дерева отказов (FTA) [IEC 61025:2006, Fault tree analysis (FTA)]

3 Термины, определения, сокращения и обозначения

В настоящем стандарте применены термины по МЭК 60050-191, а также следующие термины с соответствующими определениями.

3.1 Термины и определения

3.1.1 узел (node): Точка в графическом представлении дерева событий, имеющая два или более выходов.

Примечание — Узлу дерева событий может соответствовать вершина событий соответствующего дерева неисправностей.

3.1.2 общая причина (common cause): Причина реализации одновременно нескольких событий (кратных событий).

[МЭК 61025:2006, 3.15]

Примечание — В некоторых случаях должен быть определен период, в течение которого происходят эти события, например, несколько событий происходят одновременно или в течение короткого промежутка времени.

ПримерПриродные опасности (например, пожар, наводнение), отказы технических систем, заражение инфекцией или действия человека.

3.1.3 событие (event): Возникновение условия или воздействия.

[МЭК 61025:2006, 3.8]

3.1.4 заголовок (headings): Фактор защиты, указанный на линии, расположенной над графическим изображением дерева событий.

3.1.5 инициирующее событие (initiating event): Событие, которое является отправной точкой дерева событий и последовательности событий, которые могут привести к различным возможным выходам.

3.1.6 фактор защиты (mitigating factor): Система, функция или другой косвенный фактор, смягчающий последствия инициирующего события.

Примечание — Во многих отраслях промышленности существуют эквивалентные термины, например, линия обороны, линия защиты, система защиты, барьер безопасности, линия гарантии, фактор снижения риска и т.д.

3.1.7 выход (outcome): Возможный результат последовательности событий после всех воздействий рассмотренных факторов защиты, если дальнейшей разработки дерева событий не требуется.

3.1.8 последовательность событий (sequence): Цепочка событий от инициирующего события к последующим событиям, приводящая к определенному выходу.

3.1.9 главное событие, вершина событий (top event): Установленное неблагоприятное событие, которое является отправной точкой и главной целью анализа дерева неисправностей. Это событие занимает высшую позицию в структуре дерева неисправностей.

Примечание — Главное событие (вершина событий) является результатом комбинации всех входных событий.

3.1.10 ветвь (branch): Графическое представление одного, двух или более возможных выходов из узла.

3.2 Сокращения и обозначения

ССА — анализ причин и последствий;

ССА — Cause-Consequence Analysis.

ЕТА — анализ дерева событий;

FMEA — анализ видов и последствий отказов;

FMEA — Failure Mode and Effects Analysis.

FTA — анализ дерева неисправностей;

FTA — Fault Tree Analysis.

IRF — индивидуальный риск гибели человека;

IRF — Individual Risk of Fatality.

LESF — комбинация двух методов анализа надежности: больших деревьев событий (LE) и соответствующих небольших деревьев неисправностей (SF);

LESF — Large Event Trees (LE), Small Fault Trees (SF).

LOРА — анализ уровней защиты;

LOPA — Layers Of Protection Analysis.

RBD — метод структурной схемы надежности;

RBD — Reliability Block Diagrams.

PRA — вероятностная оценка риска;

PRA — Probabilistic Risk Assessment.

PRA/PSA — анализ вероятностной оценки риска/безопасности;

PRA/PSA — Probabilistic Risk/Safety Analysis.

SELF — комбинация двух методов анализа надежности: небольших деревьев событий (SE) и больших деревьев неисправностей (LF).

Источник

Оцените статью
Разные способы