- Понятие модели и моделирования
- 1.2.3. Классификация моделей и моделирования по признаку «способ реализации модели»
- 1.3. Этапы моделирования
- Понятие модели и моделирования
- 1.1. Общее определение модели
- 1.2. Классификация моделей и моделирования
- 1.2.1. Классификация моделей и моделирования по признаку «характер моделируемой стороны объекта»
- 1.2.2. Классификация моделей и моделирования по признаку «характер процессов, протекающих в объекте»
Понятие модели и моделирования
1.2.3. Классификация моделей и моделирования по признаку «способ реализации модели»
Согласно этому признаку модели делятся на два обширных класса:
- абстрактные (мысленные) модели;
- материальные модели.
Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.
Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.
Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:
Символическая модель — это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса , графики, диаграммы и т. п.
Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.
Математическое моделирование — это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.
Математическое моделирование — главная цель и основное содержание изучаемой дисциплины.
Математические модели могут быть:
- аналитическими;
- имитационными;
- смешанными (аналитико-имитационными).
Аналитические модели — это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла — аналитическая модель электромагнитного поля. Закон Ома — модель электрической цепи.
Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик («в общем виде»). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.
Имитационное моделирование. Создание вычислительных машин обусловило развитие нового подкласса математических моделей — имитационных.
Имитационное моделирование предполагает представление модели в виде некоторого алгоритма — компьютерной программы, — выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.
Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм — имитационной моделью.
В чем заключается отличие имитационных и аналитических моделей?
В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.
В случае же имитационного моделирования имитационная модель — программа — реализуется на ЭВМ.
Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием.
Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы, и для которых, возможно, используют аналитические модели, а для остальных подпроцессов строят имитационные модели.
Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство — модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.
Нередко создаются материально-абстрактные модели. Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная — абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.
Классификация по рассмотренному признаку — способу реализации модели — показана на рис. 1.2.
1.3. Этапы моделирования
Математическое моделирование как, впрочем, и любое другое, считается искусством и наукой. Известный специалист в области имитационного моделирования Роберт Шеннон так назвал свою широко известную в научном и инженерном мире книгу: » Имитационное моделирование — искусство и наука». Поэтому в инженерной практике нет формализованной инструкции, как создавать модели. И, тем не менее, анализ приемов, которые используют разработчики моделей, позволяет усмотреть достаточно прозрачную этапность моделирования.
Первый этап: уяснение целей моделирования. Вообще-то это главный этап любой деятельности. Цель существенным образом определяет содержание остальных этапов моделирования. Заметим, что различие между простой системой и сложной порождается не столько их сущностью, но и целями, которые ставит исследователь.
Обычно целями моделирования являются:
- прогноз поведения объекта при новых режимах, сочетаниях факторов и т. п.;
- подбор сочетания и значений факторов, обеспечивающих оптимальное значение показателей эффективности процесса;
- анализ чувствительности системы на изменение тех или иных факторов;
- проверка различного рода гипотез о характеристиках случайных параметров исследуемого процесса;
- определение функциональных связей между поведением («реакцией») системы и влияющими факторами, что может способствовать прогнозу поведения или анализу чувствительности;
- уяснение сущности, лучшее понимание объекта исследования, а также формирование первых навыков для эксплуатации моделируемой или действующей системы.
Второй этап: построение концептуальной модели. Концептуальная модель (от лат. conception ) — модель на уровне определяющего замысла, который формируется при изучении моделируемого объекта. На этом этапе исследуется объект , устанавливаются необходимые упрощения и аппроксимации. Выявляются существенные аспекты, исключаются второстепенные. Устанавливаются единицы измерения и диапазоны изменения переменных модели. Если возможно, то концептуальная модель представляется в виде известных и хорошо разработанных систем: массового обслуживания, управления, авторегулирования, разного рода автоматов и т. д. Концептуальная модель полностью подводит итог изучению проектной документации или экспериментальному обследованию моделируемого объекта.
Результатом второго этапа является обобщенная схема модели, полностью подготовленная для математического описания — построения математической модели.
Третий этап: выбор языка программирования или моделирования, разработка алгоритма и программы модели. Модель может быть аналитической или имитационной, или их сочетанием. В случае аналитической модели исследователь должен владеть методами решения.
В истории математики (а это, впрочем, и есть история математического моделирования) есть много примеров тому, когда необходимость моделирования разного рода процессов приводила к новым открытиям. Например, необходимость моделирования движения привела к открытию и разработке дифференциального исчисления (Лейбниц и Ньютон) и соответствующих методов решения. Проблемы аналитического моделирования остойчивости кораблей привели академика Крылова А. Н. к созданию теории приближенных вычислений и аналоговой вычислительной машины.
Результатом третьего этапа моделирования является программа , составленная на наиболее удобном для моделирования и исследования языке — универсальном или специальном.
Четвертый этап: планирование эксперимента. Математическая модель является объектом эксперимента. Эксперимент должен быть в максимально возможной степени информативным, удовлетворять ограничениям, обеспечивать получение данных с необходимой точностью и достоверностью. Существует теория планирования эксперимента, нужные нам элементы этой теории мы изучим в соответствующем месте дисциплины.
Результат четвертого этапа — план эксперимента.
Пятый этап: выполнение эксперимента с моделью. Если модель аналитическая, то эксперимент сводится к выполнению расчетов при варьируемых исходных данных. При имитационном моделировании модель реализуется на ЭВМ с фиксацией и последующей обработкой получаемых данных. Эксперименты проводятся в соответствии с планом, который может быть включен в алгоритм модели. В современных системах моделирования такая возможность есть.
Шестой этап: обработка, анализ и интерпретация данных эксперимента. В соответствии с целью моделирования применяются разнообразные методы обработки: определение разного рода характеристик случайных величин и процессов, выполнение анализов — дисперсионного, регрессионного, факторного и др. Многие из этих методов входят в системы моделирования ( GPSS World, AnyLogic и др.) и могут применяться автоматически. Не исключено, что в ходе анализа полученных результатов модель может быть уточнена, дополнена или даже полностью пересмотрена.
После анализа результатов моделирования осуществляется их интерпретация , то есть перевод результатов в термины предметной области . Это необходимо, так как обычно специалист предметной области (тот, кому нужны результаты исследований) не обладает терминологией математики и моделирования и может выполнять свои задачи, оперируя лишь хорошо знакомыми ему понятиями.
На этом рассмотрение последовательности моделирования закончим, сделав весьма важный вывод о необходимости документирования результатов каждого этапа. Это необходимо в силу следующих причин.
Во-первых, моделирование процесс итеративный, то есть с каждого этапа может осуществляться возврат на любой из предыдущих этапов для уточнения информации, необходимой на этом этапе, а документация может сохранить результаты, полученные на предыдущей итерации.
Во-вторых, в случае исследования сложной системы в нем участвуют большие коллективы разработчиков, причем различные этапы выполняются различными коллективами. Поэтому результаты, полученные на каждом этапе, должны быть переносимы на последующие этапы, то есть иметь унифицированную форму представления и понятное другим заинтересованным специалистам содержание.
В-третьих, результат каждого из этапов должен являться самоценным продуктом. Например, концептуальная модель может и не использоваться для дальнейшего преобразования в математическую модель, а являться описанием, хранящим информацию о системе, которое может использоваться как архив , в качестве средства обучения и т. д.
Источник
Понятие модели и моделирования
Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован.
Математическая модель , являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, «бездумно», создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей.
Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге » Имитационное моделирование систем — искусство и наука». Актуальность этих требований сохраняется и в настоящее время.
1.1. Общее определение модели
Практика свидетельствует: самое лучшее средство для определения свойств объекта — натурный эксперимент, т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент — необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и «доводкой» изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.
Однако во многих случаях натурный эксперимент невозможен.
Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?
Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.
Натурное исследование нового лекарства опасно для жизни человека.
Натурный эксперимент с элементами космических станций также может вызвать гибель людей.
Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.
Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.
Выход из этого противоречия есть и называется он » моделирование «.
Моделирование — это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.
Моделирование — это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект . Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.
Моделирование, во-вторых, это испытание , исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается «промежуточное звено» — модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект .
Моделирование, в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие.
Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной — от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.
Остановимся на основных целях моделирования.
Прогноз — оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз — главная цель моделирования .
Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация — это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности — выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.
Часто модель создается для применения в качестве средства обучения: модели-тренажеры, стенды, учения, деловые игры и т. п.
Моделирование как метод познания применялось человечеством — осознанно или интуитивно — всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).
Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.
Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.
Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва — генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении — М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва — И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др.
Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения — последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.
Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях — плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.
Поучительный пример недооценки моделирования — гибель английского броненосца «Кэптен» в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец «Кэптен». В него было вложено все, что нужно для «верховной власти» на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами — для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости «Кэптена» и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.
1.2. Классификация моделей и моделирования
Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:
- характер моделируемой стороны объекта;
- характер процессов, протекающих в объекте;
- способ реализации модели.
1.2.1. Классификация моделей и моделирования по признаку «характер моделируемой стороны объекта»
В соответствии с этим признаком модели могут быть:
- функциональными (кибернетическими);
- структурными;
- информационными.
Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как «черный ящик», имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.
Компьютерная шахматная программа — функциональная модель работы человеческого мозга при игре в шахматы.
Структурное моделирование — это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание с помощью теории графов.
Учение войск — структурная модель вида боевых действий.
1.2.2. Классификация моделей и моделирования по признаку «характер процессов, протекающих в объекте»
По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.
Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.
Стохастические модели отображают вероятностные процессы и события.
Статические модели служат для описания состояния объекта в какой-либо момент времени.
Динамические модели отображают поведение объекта во времени.
Дискретные модели отображают поведение систем с дискретными состояниями.
Непрерывные модели представляют системы с непрерывными процессами.
Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.
Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.
Источник