Мобильные тепловизоры для измерения бесконтактным способом температуры человека

Содержание
  1. Тепловизор против COVID-19. Практика применения и реальные возможности
  2. Градусник или тепловизор?
  3. Устройства для бесконтактного измерения температуры тела человека
  4. Так что же такое эпидемиологический тепловизор
  5. Классификация эпидемиологических тепловизоров
  6. Ручные тепловизоры для измерения температуры тела
  7. Стационарные эпидемиологические тепловизоры для бесконтактного измерения температуры тела людей
  8. Применение эпидемиологических тепловизоров
  9. АЧТ — зачем оно нужно и можно ли обойтись без него
  10. Автоматическая компенсация температуры
  11. Перспективы
  12. Альтернатива тепловизорам
  13. Что нас ждёт?
  14. Тепловизионный контроль: бесконтактная биометрия против термометров, коронавируса и несознательных сотрудников
  15. Где применяются тепловизионные комплексы
  16. Как работают системы для потокового бесконтактного измерения температуры
  17. Калибровка тепловизионных комплексов: от эталонных образцов к машинному обучению
  18. Можно ли замаскироваться от алгоритмов
  19. Возможности тепловизионных комплексов
  20. Проблемы при работе с тепловизорами

Тепловизор против COVID-19. Практика применения и реальные возможности

ЖД-вокзалы и аэропорты, проходные предприятий и офисные центры, больницы и поликлиники, школы и детсады — всё это объекты с большой проходимостью, которые сейчас оснащаются тепловизорами. Из статьи вы узнаете об устройстве этих приборов, в чём отличия эпидемиологических тепловизоров от обычных, их практической эффективности и целесообразности применения.

Тепловизор измеряет температуру тела пассажиров в аэропорту

Градусник или тепловизор?

При нынешнем уровне развития науки и техники существует весьма ограниченный перечень точных средств для измерения поверхностной температуры тела человека. Они делятся на две большие группы по методу применения: контактные и бесконтактные. Первая группа — привычные нам градусники и термометры: ртутные, спиртовые или электронные, вторая — дистанционный термометр (пирометр) и эпидемиологические тепловизоры, которые, в свою очередь подразделяются на ручные и стационарные.

Устройства для бесконтактного измерения температуры тела человека

Устройство Точность измерения, °C Скорость измерения
Ртутный градусник 0,1 1 человек за 10 минут
Электронный градусник 0,2 >1 человек за 1 минуту
Пирометр 0,5 1 человек за 2 секунды
Ручной тепловизор 1 1 человек за 2-3 секунды
Стационарный тепловизор 0,3 за 0,5 секунды
до 30 человек сразу

Обычный ртутный градусник, который изобрёл Фаренгейт 300 лет назад, остаётся самым простым, точным и дешёвым средством измерения температуры тела человека. Браво, Габриель!

Но ставить градусник каждому на проходной предприятия, офисного здания или на пропускном терминале аэропорта просто невозможно. Это заканчивается огромными очередями и массой недовольных. Скорость — вот главная задача!

Учитывая данные из приведённой выше таблицы, стационарный эпидемиологический тепловизор примерно в 30 000 раз (!) быстрее обычного градусника. Но как же быть с точностью? У тепловизора она в 3 раза ниже, чем у термометра. А вот нужна ли безупречная точность измерения для определения факта лихорадки у человека — об этом далее в статье.

Так что же такое эпидемиологический тепловизор

Прежде чем начать рассказ о тепловизорах, обратим внимание на один очень важный факт: не существует измерительного прибора, в том числе и тепловизора, для того чтобы обнаружить какое-то конкретное заболевание: вирус или инфекцию.

Основная задача эпидемиологического тепловизора — быстро и точно выявить человека с температурой на максимально возможной дистанции. На первый взгляд может показаться, что с этой задачей справится любой измерительный тепловизор. Но это далеко не так. У традиционных измерительных тепловизоров, которые используются в строительстве, энергетике или в быту очень большая погрешность — в среднем ±2 °C. Ввиду особенностей человеческого организма, одной из которых является температурное постоянство, такая погрешность для диагностических целей неприменима.

Для того, чтобы добиться максимальной точности измерения температуры тела человека (особенно если он не один и находится в движении) нужны:

  • высокая частота радиометрических кадров, т. е. количество точек, на которых измерена температура, в единицу времени,
  • уникальный алгоритм обработки большого массива данных.

Кроме этого, оптические блоки эпидемиологических тепловизоров комплектуются видеокамерами высокого разрешения с функцией определения лиц для создания автоматических отчетов или интеграции в систему контроля и управления доступом (СКУД). В основном, это относится к стационарным системам.

Классификация эпидемиологических тепловизоров

Тепловизоры для эпидемиологического контроля подразделяются на ручные и стационарные. Последние, в свою очередь, можно разделить на те, которые используют эталонный излучатель (АЧТ) и тепловизоры без него.

Ручные тепловизоры для измерения температуры тела

Представляют из себя портативные устройства, внешне напоминающие пирометры или ручные видеокамеры. Устанавливаются на треногу или используются операторами на проходной для индивидуального измерения температуры у человека.

  • Достоинства: Лёгкие, удобные и дешевые (по сравнению со стационарными). Работают несколько часов автономно за счёт встроенного аккумулятора. Полезны там, где нет возможности подключиться к стационарному источнику электроэнергии, например, в поезде или самолёте.
  • Недостатки: Низкая (по сравнению со стационарными) точность измерения, нет захвата всех лиц в кадре, температуру приходится измерять у каждого человека в отдельности, маленькая дальность действия. Оператору необходимо наводить измерительную рамку тепловизора на лицо человека — имеет место человеческий фактор. Нельзя интегрировать в СКУД. Нет записи событий с распознаванием ФИО человека по базе. Применяются для индивидуального измерения температуры тела. Не рекомендуется использовать в местах с интенсивным потоком людей.

Стационарные эпидемиологические тепловизоры для бесконтактного измерения температуры тела людей

Стационарные тепловизоры эпидемиологического контроля представляют из себя аппаратно-программные комплексы, состоящие, как правило, из двух отдельных блоков:

  • оптический блок: тепловизор+видеокамера,
  • блок управления: ноутбук, системный блок, автоматизированное место оператора.
Читайте также:  Для определения информации используются следующие способы тест

Это более точные и быстрые приборы для определения температуры человека. Основное отличие от ручных — возможность одновременного измерения температуры большого потока людей в полностью автоматическом режиме. Это свойство незаменимо в тех случаях, где индивидуальный замер температуры невозможен, например, контрольно-пропускной пункт терминала аэропорта.

Применение эпидемиологических тепловизоров

Применение стационарных эпидемиологических тепловизоров довольно обширно: терминалы аэропортов, ж/д вокзалов, морских портов; КПП; проходные предприятий, офисов; входные группы стадионов, фитнес-центров, концертных залов, гостиниц, крупных ТЦ; метро — там, где возможно большое скопление людей.

Сравнительная таблица ручных и стационарных тепловизоров эпидемиологического контроля

Параметр Ручной Стационарный
Температурная чувствительность NETD 0,06 °C 0,04 °C
Точность измерения ±2 °C ±0,3 °C
Дальность действия 1,5 м 5-7 м
Автоматический захват всех лиц в кадре Нет. Измерение проводится по каждому человеку в отдельности путем наведения измерительной рамки на лицо Да
Время срабатывания 2-3 с 0,5 с
Ширина зоны контроля 1,5 м 5 м
Наличие дневной видеокамеры Нет Да
Интеграция СКУД (турникет на кпп) Нет Да
Автоматическая запись тревожных событий с распознаванием фио человека по базе. Нет Да
Возможность подключения мобильных устройств (планшетов) для оперативного перемещения сотрудника охраны в зоне досмотра Нет Да
Цена Низкая Высокая

Основные производители тепловизоров на российском рынке

Sunell Guide Hikvision Dahua Dali Pergam Workswell Testo Opgal FLIR
Китай Россия Чехия Германия Израиль США

АЧТ — зачем оно нужно и можно ли обойтись без него

АЧТ — это абсолютно черное тело — эталонный излучатель, который на своей поверхности формирует очень точное значение температуры, до сотых долей градуса. Устанавливается в поле зрения объектива тепловизора, используется в качестве эталона температуры для калибровки прибора. Таким образом увеличивается точность измерения температуры до 0,3 °C.

Цель использования АЧТ — увеличить точность измерения температуры, т. е. повысить вероятность обнаружения человека с температурными отклонениями.

Но давайте разберёмся, работает ли это так, как должно. Поверхностная температура тела здорового человека находится в диапазоне от 26 до 37 °C — этот диапазон зависит от окружающей среды и физиологических особенностей конкретного организма. Возникает вопрос: зачем нам такая точность? Ведь получается, что идеально откалиброванный с помощью АЧТ тепловизор с точностью в 0,3 °C измерит температуру человека, вошедшего в помещение с морозного воздуха, но «не увидит» лихорадку, т. к. поверхностная температура тела была понижена условиями окружающей среды. Получается, что формальный подход сравнивания температур работает только в условиях постоянной окружающей температуры.

Наиболее универсальный и действенный способом безошибочного обнаружения человека с повышенной температурой в плотном потоке людей — использование математической модели, которая вычисляет среднюю температуру у людей в потоке и корректирует порог срабатывания системы.

Уникальный режим работы: В тепловизоре «Пергамед-Барьер» применяется именно такое решение для автоматического измерения температуры людей в потоке. Используется математическая модель нейросети, которая вычисляет среднюю температуру потока и корректирует порог срабатывания системы.

Автоматическая компенсация температуры

Эта технология называется автоматическая компенсация температуры или Absolute temperature compensator (ATC). Автоматически подсчитываются средние значения температуры последних 10 объектов, причем, не принимая во внимание 2 наибольших и 2 наименьших значения. Это позволяет использовать прибор в полностью автоматическом режиме, без использования эталонного «абсолютно чёрного тела», а также исключает ложные срабатывания.

Перспективы

Возможно ли 100 % обнаружение человека, инфицированного COVID-19, при использовании тепловизионной аппаратуры? Нет! Задача тепловизора не поставить диагноз (пока это невозможно сделать на расстоянии, к сожалению), а выявить людей с повышенной температурой тела, предупреждая обслуживающий персонал здания о вероятной угрозе. И с этой задачей эпидемиологические тепловизоры справляются достаточно неплохо. Естественно, чем технологичней тепловизор, тем меньше погрешность и точнее результат.

Достоверно известно, что любая нестандартная или серьёзная проблема даёт мощный импульс для развития технологий. И нынешняя эпидемия не исключение. Уже сейчас видно, как сильно оживился рынок тепловизоров во всём мире. Кто знает, может быть после эпидемии коронавируса будут разработаны принципиально новые средства обнаружения людей с неудовлетворительными параметрами общего состояния, которые будут давать 100% результат. Однако пока что этого не произошло.

Что касаемо теплоизмерительной аппаратуры, то в этом случае эпидемиологический тепловизор должен выступить в роли первого эшелона обороны — защитить границы и обнаружить невидимое простым взглядом. Само собой разумеется, что всех подозрительных людей с помощью тепловизора выявить нельзя (в основном за счет бессимптомного течения болезни и с учетом инкубационного периода). Однако снизить риск массового заражения вследствие своевременно поданного сигнала об изменениях температуры выше или ниже нормы они вполне способны.

Альтернатива тепловизорам

На данный момент альтернативы эпидемиологическому тепловизору, как эффективному средству выявления патологических колебаний температуры на пропускных пунктах (входах) не существует! Но увеличить его эффективность можно с помощью дополнительного оборудования, установленного параллельно. Более того, комплекс диагностической аппаратуры сможет с высокой долей вероятности выявить отклонения от нормы даже при наличии средств индивидуальной защиты на человеке, а именно: маски и перчаток.

Читайте также:  Презентация по русскому языку способ словообразования

Что нас ждёт?

Человечество постоянно живёт бок о бок с опасными, потенциально-опасными, незначительно-опасными и условно безвредными микроорганизмами, бактериями и вирусами. Но дело в том, что с развитием цивилизации увеличивается и плотность населения, создавая тем самым благоприятную почву для быстрого распространения любой эпидемии: междугородние поездки, перелёты, путешествия, туризм. Это не значит, что нужно безвылазно сидеть дома и никуда не ходить, в том числе и на работу. Нет. Человек за долгую историю своей эволюции приобрёл устойчивость ко многим видам болезней и способен переносить их без особого вреда для здоровья. Но вот грипп, к которому также относится и коронавирусная инфекция, по-прежнему остаётся тем заболеванием, которое сможет оставить о себе память на много лет в виде осложнений различной степени тяжести.

Чтобы этого не произошло, следует внимательней относится к своему здоровью, беречь и укреплять иммунитет заранее, а не тогда, когда «прозвенела сирена», следить за своим состоянием и стараться вести правильный образ жизни. И тогда, может быть, через пару сотен лет люди окончательно перестанут болеть. Ну а пока этого не произошло, высокотехнологичные тепловизоры, современная медицина, соблюдение предписаний организаций здравоохранения и здравый смысл помогут справиться с любой опасностью!

Автор: Александр Кудрявцев, руководитель отдела «Системы безопасности» компании «Пергам».

Источник

Тепловизионный контроль: бесконтактная биометрия против термометров, коронавируса и несознательных сотрудников

Пять секунд — это много или мало? Чтобы выпить горячий кофе — мало, чтобы приложить карту и пройти на работу — много. Но иногда даже из-за такой задержки на проходных образуются очереди, особенно по утрам. А давайте теперь выполним требования по профилактике COVID-19 и начнём измерять температуру у всех входящих? Время прохода увеличится в 3–4 раза, из-за этого появится толпа, и вместо борьбы с вирусом мы получим идеальные условия для его распространения.

Чтобы этого не произошло, нужно либо организовать людей в очередь, либо автоматизировать этот процесс. Во втором варианте необходимо считать температуру сразу у большого числа людей, не нагружая их дополнительными действиями. Это можно сделать, если дополнить систему видеонаблюдения тепловизором и выполнять сразу несколько действий: идентифицировать лица, измерять температуру и определять наличие маски. О том, как работают такие системы, мы говорили на нашей конференции «Биометрия против пандемии» и подробнее расскажем под катом.

Где применяются тепловизионные комплексы

Тепловизор — оптико-электронное устройство, которое «видит» в инфракрасном спектре. Да, это та самая штука из боевиков про лихой спецназ и фильмов про Хищника, которая красиво раскрашивает обычное изображение в красно-синие тона. На практике ничего необычного в ней нет и их используют достаточно широко: тепловизорами определяют положение и форму излучающих тепло объектов и измеряют их температуру.

В промышленности тепловизоры давно применяют для контроля температуры на производственных линиях, промышленного оборудования или трубопроводов. Часто тепловизоры можно заметить по периметру серьёзных объектов: тепловизионные комплексы «видят» тепло, которое излучает человек. С их помощью охранные системы засекают несанкционированное проникновение на объект даже в абсолютной темноте.

Из-за COVID-19 тепловизоры всё чаще интегрируются с системами биометрической идентификации для контроля доступом. Например, интегрированные в «БиоСКУД» (комплексное решение Ростелекома, которое разрабатывается и производится в России) тепловизионные устройства могут измерять температуру людей, отслеживать перемещение и выделять отдельных лиц с повышенной температурой.

Обязательных нормативов по применению тепловизионных систем в России нет, но есть общая рекомендация Роспотребнадзора, согласно которой необходимо контролировать температуру всех посетителей и сотрудников. И тепловизионные комплексы делают это почти мгновенно, не требуя от сотрудников и посетителей дополнительных действий.

Как работают системы для потокового бесконтактного измерения температуры

Основа системы — тепловизионный комплекс из тепловизионной и обычной камер, которые упакованы в общий корпус. Если вы идёте по коридору, а вам в лицо смотрит пухлая двуглазая камера — это и есть тепловизор. Шутники-китайцы иногда делают их в белом корпусе и добавляют небольшие «ушки», чтобы они были больше похожи на панд.

Простая оптика нужна для интеграции с «БиоСКУД» и работы алгоритмов распознавания лиц — для идентификации и проверки наличия средств индивидуальной защиты (масок) у входящих. Дополнительно через обычную камеру можно контролировать дистанцию между людьми или между людьми и оборудованием. В программном обеспечении видеоинформация о результатах измерения отображается в привычном для оператора виде.

Чтобы тепловизор реагировал только на температуру людей, в нём уже прописан алгоритм детектирования лиц. Оборудование считывает температуру с термальной матрицы в нужных точках — в данном случае в области лба. Без этого «фильтра» тепловизор срабатывал бы на чашки горячего кофе, лампочки накаливания и т. д. Среди дополнительных функций — контроль наличия средств защиты и соблюдения дистанции.

Обычно на входе в помещения тепловизионные комплексы интегрируются с системами контроля и управления доступом. Комплекс подключается к серверу, который обрабатывает поступающие данные алгоритмами видеоаналитики и передаёт их на автоматизированное рабочее место оператора (АРМ).

Если тепловизионная камера определяет повышенную температуру, то обычная камера снимает фото посетителя и отправляет в систему контроля для идентификации с базой сотрудников или посетителей.

Читайте также:  Способ стерилизации с применением антибиотиков это

Калибровка тепловизионных комплексов: от эталонных образцов к машинному обучению

Для настройки и работы потокового бесконтактного измерения температуры обычно применяют абсолютно чёрное тело (АЧТ), которое при любой температуре поглощает электромагнитное излучение во всех диапазонах. Оно устанавливается в поле зрения тепловизионной камеры и используется для калибровки тепловизора. В АЧТ поддерживается эталонная температура 32–40 °С (в зависимости от производителя), с которой оборудование «сверяется» каждый раз, измеряя температуру других объектов.

Пользоваться такой системой неудобно. Так, для корректной работы тепловизора чёрное тело должно 10–15 минут прогреваться до нужной температуры. На одном объекте на ночь отключали тепловизионный комплекс, а утром АЧТ не успевало как следует нагреться. В результате у всех входящих в начале смены фиксировалась повышенная температура. Позже разобрались, теперь тепловизионный комплекс на ночь не отключают.

Сейчас мы разрабатываем экспериментальную технологию, которая позволяет обойтись без АЧТ. Оказалось, что наша кожа по своим характеристикам близка к абсолютно чёрному телу, и лицо человека можно использовать как эталон. Мы знаем, что у большинства людей температура тела — 36,6 °С. Если, например, в течение 10 минут отслеживать людей с одинаковой температурой и принять эту температуру за 36,6 °С, то можно откалибровать тепловизор по их лицам. Эта технология, реализованная с помощью искусственного интеллекта, показывает неплохие результаты — не хуже, чем у тепловизионных комплексов с АЧТ.

Там же, где АЧТ по-прежнему используется, искусственный интеллект помогает в калибровке тепловизоров. Дело в том, что большинство тепловизионных комплексов предполагает ручную установку тепловизора и его настройку на АЧТ. Но тогда при изменениях условий калибровку приходится делать заново, иначе тепловизоры начинают показывать температуру с отклонениями или реагировать на посетителей с нормальной температурой. Ручная калибровка — та ещё радость, поэтому мы разработали модуль на основе искусственного интеллекта, который отвечает за обнаружение АЧТ и настраивает всё сам.

Можно ли замаскироваться от алгоритмов

Искусственный интеллект и машинное обучение часто используются в бесконтактной биометрии. На плечи ИИ ложатся детектирование лиц в потоке для измерения температуры, игнорирование посторонних объектов (горячая чашка с кофе или чаем, элементы освещения, электроника). Ну а обучение алгоритмов на распознавание лиц в масках — must have любой системы с 2018 года, ещё до коронавируса: на Ближнем Востоке люди закрывают значительную часть лица по религиозным соображениям, а во многих азиатских странах давно используют маски для защиты от гриппа или городского смога. Распознать наполовину скрытое лицо сложнее, но и алгоритмы совершенствуются: сегодня нейросети детектируют лица в масках с такой же вероятностью, как год назад без масок.

Казалось бы, что проблемой при идентификации должны были стать маски и другие средства индивидуальной защиты. Но на практике ни наличие маски, ни изменение причёски или формы очков не влияют на точность распознавания. Алгоритмы для детектирования лиц используют точки из области глаза-уши-нос, которые остаются открытыми.

Единственная «отказная» ситуация из нашей практики связана с изменением внешности при помощи пластической хирургии. Сотрудница после пластической операции не смогла пройти через турникеты: биометрические процессоры не смогли её идентифицировать. Пришлось обновлять фото, чтобы доступ по геометрии лица снова заработал.

Возможности тепловизионных комплексов

Точность измерения и её скорость зависят от разрешения матрицы тепловизора и других его характеристик. Но за любой матрицей стоит ПО: за определение объектов в кадре, за их идентификацию и фильтрацию отвечает алгоритм видеоаналитики.

Например, алгоритм одного из комплексов измеряет температуру у 20 человек одновременно. Пропускная способность комплекса — до 400 человек в минуту, этого достаточно для использования на крупных промышленных предприятиях, в аэропортах и на вокзалах. При этом тепловизоры фиксируют температуру на расстоянии до 9 метров с точностью плюс-минус 0,3 °С.
Есть комплексы попроще. Однако и они могут эффективно справляться со своими задачами. Одно из решений – интеграция тепловизора в рамку металлодетектора. Такой комплект оборудования подойдёт для пропускных пунктов с небольшим потоком посетителей – до 40 человек в минуту. Подобное оборудование детектирует лица людей и измеряет температуру с точностью до 0,5 °С на расстоянии до 1 метра.

Проблемы при работе с тепловизорами

Бесконтактное измерение температуры людей в потоке пока нельзя назвать совершенным. Например, если в холодную погоду человек долго был на улице, на входе тепловизор покажет температуру на 1–2 °С ниже реальной. Из-за этого система может пропустить на объект людей с повышенной температурой. Это можно решить разными способами, например:

  • а) создать тепловой коридор, чтобы перед замером температуры люди адаптировались и отходили от мороза;
  • б) в морозные дни добавлять к температуре всех входящих 1–2 °С – правда, так под подозрение попадут те, кто приехал на машине.

Другая проблема — ценник точных тепловизионных комплексов. Это связано с высокой себестоимостью производства тепловизионной матрицы, которая требует точной калибровки, германиевой оптики и т. д.

Источник

Оцените статью
Разные способы