Биология. 5 класс
Конспект урока
Биология, 5 класс
Урок 2. Методы изучения биологии
Перечень вопросов, рассматриваемых на уроке:
- Урок посвящён методам изучения биологии.
Биология, научный метод, наблюдение, эксперимент
Научный метод – это совокупность приемов и операций, используемых при построении системы научных знаний.
Наблюдение – метод, с помощью которого исследователь собирает информацию об объекте (восприятие природных объектов с помощью органов чувств).
Эксперимент – метод исследования в биологии, при котором экспериментатор сознательно изменяет условия и наблюдает, как они влияют на живые организмы. Эксперимент можно проводить как в лаборатории, так и на открытом воздухе.
Измерение – это определение количественных значений тех или иных признаков изучаемого объекта или явления с помощью специальных технических устройств.
Обязательная и дополнительная литература по теме
- Биология. 5–6 классы. Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019
- Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
- Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
- Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
- Биология. 6 класс. Беркинблит М. Б., Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.
- Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
- Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.
Теоретический материал для самостоятельного изучения
Сегодня на уроке мы обсудим с вами методы изучения природы.
-Что такое метод?
Методом – называется последовательность действий, приводящих к определённому результату.
Ну, например, нам надо с вами порезать яблоко, сделать это можно разными методами. Я предлагаю вашему вниманию набор инструментов. Итак, что же нам выбрать ну, если мы хотим отрезать кружок от яблока, мы, скорее всего, воспользуемся с вами обычным ножом и разделочной доской. Попробуем, ура, получилось. Может быть, перед нами стоит более сложная задача и нам требуется нарезать яблоко дольками, для этого я предлагаю использовать вот такую яблокорезку, обратите внимание, ячейки яблокорезки разрежут яблоко на ровные дольки и при этом будет удалена сердцевина яблока. Приступаем. Отлично у нас всё с вами получилось. Но может быть, стоит задача измельчить яблоко, для этого я предлагаю использовать тёрку.
Результат использования данного метода налицо, подведём итог: метод, который мы выбираем для того, чтобы действовать, зависит от тех целей, которые мы перед собой ставим и того инструмента, который мы имеем, но сегодня речь пойдёт о научном методе.
Научным методом, ребята, называется совокупность способов получения новых знаний. Мы ведь с вами на уроки и приходим, чтобы получать новые знания. И среди научных методов выделяют три основных, именно эти методы я сегодня вам и продемонстрирую.
Для познания живой природы учёному очень важно правильно выбрать путь исследования, или метод (от греч. методос – способ познания), которым он будет пользоваться. Различают практические и теоретические методы. К практическим методам относят наблюдение и эксперимент (опыт). Теоретические методы связаны с объяснением результатов, полученных в ходе наблюдения или опытным путём. Они приводят к установлению различных закономерностей и взаимосвязей, а в конечном итоге – законов природы. Знание этих законов позволяет человеку понимать процессы, происходящие в живой природе, предвидеть их и использовать в практических целях.
Этот метод остаётся важным методом научного познания сегодня. Например, можно наблюдать за поведением животных в природе.
Так как наблюдение даёт возможность получить ответ па поставленный вопрос, оно должно быть целенаправленным, то есть иметь определённую цель. Для того чтобы достигнуть поставленной цели, необходимо разработать план наблюдения, то есть порядок действий. Получаемые в ходе наблюдения ответы на поставленные вопросы необходимо как можно подробнее записывать в специальный дневник наблюдения. При этом ничего от себя добавлять нельзя. Для получения достоверных результатов необходимо провести повторные наблюдения в тех же условиях.
Эксперимент (от лат. экспериментум – проба, опыт) – более сложный, чем наблюдение, практический метод. С его помощью можно подтвердить или опровергнуть какое-либо предположение. От наблюдения эксперимент отличается активным воздействием на изучаемый объект.
Например, можно опытным путём установить, как влияет полив на рост растения.
Если при соблюдении одних и тех же условий результаты нескольких опытов совпадают, то говорят о достоверности полученных данных.
Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение – это определение количественных значений тех или иных признаков изучаемого объекта или явления с помощью специальных технических устройств. Самым простым измерительным инструментом является линейка. С её помощью измеряют длину, ширину и высоту предметов. Для измерения массы тел используют весы, для измерения температуры – термометры. Хорошо знаком вам прибор для измерения времени – часы. Для проведения сложных измерений конструируют специальные приборы.
Разбор типового тренировочного задания:
Тип задания: Добавление подписей к изображениям;
Текст вопроса: Подпишите приборы.
Правильный вариант ответа:
Разбор типового контрольного задания
Тип задания: Выделение цветом;
Текст вопроса: Теоретические методы исследования
Источник
Микроскоп это способ получения новых научных знаний
«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский
Методы биологии
Метод исследования — это способ научного познания действительности
Общенаучные методы
Наблюдение
Визуально или с помощью приборов следят за
различными объектами для достижения
поставленной цели
Изучают
сезонные изменения в природе, в жизни
растений и животных, поведение
животных
Описание
Устная или письменная характеристика
объекта по результатам наблюдений, получение и накопление информации об
объектах, процессах
Палеонтолог описывает кости скелета вымершего животного
Измерение
Определение количественных значений тех или иных признаков изучаемого объекта или явления с помощью специальных технических устройств
Измерение температуры тела человека, линейкой замеряют рост растения за определенный период времени
Сравнение
Сопоставление и нахождение
сходств и различий между
объектами (организмами,
процессами и др.)
Если сравнивать шерсть бурого и белого медведя, то можно прийти к выводу, что по своим свойствам они много в чем схожи друг с другом (густота, длина, ощущения при прикосновении к ней и т. д.), однако различаются в окраске.
Используется в систематике для распределения
организмов по группам, для
установления родства и общего
происхождения
Классификация
Распределение объектов по соподчинённым группам в соответствии с определёнными признаками
Кошка на основе строения, физиологии, происхождения относится к классу Млекопитающие
Мониторинг
Проведение регулярных измерений
каких-то величин объектов (процессов
организмов, популяций, экосистем,
биосферы). Позволяет выявлять изменения каких-
либо параметров, показателей во
времени
Благодаря мониторингу
своевременно можно выявить и принять
меры по предупреждению негативных
изменений в природе, в популяциях
Анализ
Изучение объекта (процесса) по отдельным
составляющим компонентам. Мысленное разделение изучаемого объекта, выяснение, из каких частей он состоит, каковы его свойства и признаки
С помощью анализа можно исследовать органеллы внутри клетки, клетку внутри организма, организм внутри биоценоза
Синтез
Процесс соединения или объединения ранее разрозненных вещей или понятий в целое или набор.
Обобщая знания о строении млекопитающих, птиц, рептилий, амфибий и рыб, можно сделать обобщенный вывод о строении позвоночных. Благодаря синтезу можно изучить целостные характеристики биологических систем (клетки, организма, биоценоза).
Эксперимент
В специальных условиях (управляемых и
контролируемых) проводится опыт.
Обязательно есть опытная группа,
есть контрольная группа. Используется для получения новых научных знаний,
закономерностей, для подтверждения
или опровержения выдвигаемой
гипотезы
Эксперимент, доказывающий образование крахмала при фотосинтезе. Выращивание клеток при разных температурах, выявляя оптимум, при котором рост максимально быстрый
Моделирование
Создаются копии прототипа (объектов, процессов) для их изучения. Изучение объектов на моделях позволяет визуализировать невидимые объекты, изучать и прогнозировать изменения, позволяет отрабатывать умения и навыки, оно менее затратное.
Карта – модель ландшафта
Статистический
Проводится сбор и анализ числовых показателей для дальнейшей обработки. Позволяет получать информацию о динамике изменения показателей, позволяет прогнозировать изменения и своевременно принимать определенные меры.
Выявление частоты встречаемости определенных генов в популяции
Обобщение
Метод, с помощью которого ученые выявляют из частного общее, формулируют теории, законы.
Формулировка правил, законов на основе сравнения результатов экспериментов
Абстрагирование
Позволяет не учитывать ряд существенных для конкретного исследования свойств и признаков биологических объектов, однако помогает выделить те свойства и признаки, которые важны
В исследованиях основных направлений эволюционного процесса главное внимание уделяется усложнению строения органов и систем органов, которое обеспечивает приспособление организмов к условиям существования
Метод микроскопия (микроскопирование)
Источник
12 методов в картинках: микроскопия
Авторы
Редакторы
Один из старейших научных приборов — микроскоп — появился практически одновременно с наукой в ее современном виде. Этот канонический инструмент биолога более 400 лет был важнейшим средством для познания живого, и дал львиную долю наших знаний об устройстве жизни. Все это время эволюция микроскопа продолжалась, расширяя возможности увидеть неразличимое глазом.
12 биологических методов в картинках
Генеральный партнер цикла — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Одна из главных миссий «Биомолекулы» — докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи — мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?
И вот мы решили рассказать о лабораторных методах более системно, собрать воедино в одной рубрике самые главные, самые современные биологические методики. Чтоб было интереснее и нагляднее, мы густо проиллюстрировали статьи и даже кое-где добавили анимации. Мы хотим, чтобы статьи новой рубрики были интересны и понятны даже случайному прохожему. И с другой стороны — чтобы они были так подробны, что даже профессионал мог бы обнаружить в них что-то новое. Мы собрали методики в 12 больших групп и собираемся сделать на их основе биометодический календарь. Ждите обновлений!
История микроскопии
На пороге микромира
Собирающие (увеличивающие) линзы были известны с XI века, и очки распространились по Европе уже в XIV веке. Традиционно изобретение первого составного микроскопа приписывают отцу и сыну — Хансу и Захарию Янсенам в 1595 году (рис. 1). Этот первый микроскоп мог увеличивать изображение всего в 3–9 раз. Есть версия, что первый микроскоп создал Корнелиус Дреббель. Среди изобретателей первых микроскопов был и Галилей, создавший свой микроскоп в 1609 году. Так или иначе, ни один из изобретателей не оставил подробных описаний микромира. Микроскопия как наука началась с Роберта Гука, который в 1665 году издал Micrographia — книгу, в которой подробно описывались устройство микроскопа, основы оптики и первые наблюдения за биологическими объектами, иллюстрированные подробными рисунками [1]. Микроскоп Гука (рис. 2) состоял из трех линз и источника света — эта основа сохраняется и в современной микроскопии. Однако достичь больших увеличений удалось с помощью более простой конструкции — Антони ван Левенгук использовал, казалось бы, примитивный микроскоп всего с одной линзой (рис. 2). Однако благодаря высочайшему качеству этой линзы ему удалось достичь 200-кратного увеличения и описать клетки простейших и даже крупные бактерии. Использование всего одной линзы не создавало оптических аберраций, которые только множились при конструировании более сложной оптической системы.
Генеральный партнер цикла «12 методов» — компания «Диаэм»
«Диаэм» — крупнейшая российская компания, специализирующаяся на поставке оборудования и реагентов ведущих мировых производителей в области микроскопии: от микроскопов начального уровня до исследовательских, конфокальных и мультифотонных систем, а также автоматизированных биоимиджинговых систем, способных поддерживать жизнеспособность клеток при постановке длительных экспериментов.
Материал предоставлен партнёром — компанией «Диаэм»
Рисунок 1. Микроскопия: этапы большого пути. 1590 г. — Захарий и Ханс Янсены создают первый микроскоп. 1665 г. — первое издание книги Роберта Гука Micrographia: описание и иллюстрации первых микроскопических исследований. 1674 г. — Антони ван Левенгук с помощью своего микроскопа описывает инфузории, а в дальнейшем — бактерии, сперматозоиды, вакуоли внутри клетки и т.п. 1858 г. — Йозеф фон Герлах разрабатывает окрашивание кармином — одной из первых гистологических красок. 1878 г. — Эрнст Аббе выводит формулу Аббе, позволяющую вычислить максимальное разрешение, исходя из длины волны. 1911 г. — Оскар Хеймштадт изобретает первый флуоресцентный микроскоп. 1929 г. — Филипп Эллингер и Август Хирт конструируют эпифлуоресцентный микроскоп, в котором эффективно отфильтровывалось излучение от источника света. 1932 г. — Фриц Цернике изобретает фазовый контраст, позволяя рассматривать живые неокрашенные объекты с большим контрастом. 1933 г. — Эрнст Руска совместно с Максом Кноллем создает первый электронный микроскоп. В 1939 году с его помощью выпустили первый коммерческий электронный микроскоп. 1934 г. — Джон Маррак получает первый конъюгат антитела с красителем. Первое практическое использование Альбертом Кунсом, усовершенствовавшим технику конъюгацией с флуоресцентной меткой. 1942 г. — Эрнст Руска создает сканирующий электронный микроскоп. 1962 г. — первое описание GFP Осамой Симомурой. 1967 г. — первое использование конфокальной микроскопии Моймиром Петраном, Дэвидом Эггером и Робертом Галамбосом. 1969 и 1971 гг. — первое описание конфокальной лазерной микроскопии. 1981 г. — Герд Бинниг и Генрих Рорер создают первый сканирующий туннельный микроскоп. 1986 г. — Герд Бинниг, Келвин Куэйт и Кристофер Гербер изобретают атомно-силовую микроскопию. 1990 г. — Винфрид Денки и Джеймс Стиклер разрабатывают первый двухфотонный микроскоп. 1994 г. — Штефан Хелл: суперразрешающая электронная микроскопия на основе подавления спонтанного испускания (STED). 2006 г. — изобретение PALM/STROM-микроскопии. Чтобы увидеть рисунок в полном размере, нажмите на него.
Рисунок 2а. Первые «ласточки». Микроскоп Гука (реконструкция).
Источник