Микробиологический способ получения ферментов

Технология получения ферментов микроорганизмов

В зависимости от источника технология получения ферментных препаратов имеет свои особенности. При извлечении ферментов из растительного сырья и животных тканей технология сводится к экстракции энзимов и очистке их от сопутствующих балластных веществ. Технология ферментных препаратов микробного происхождения более сложная, так как дополнительно включает этапы культивирования микроорганизмов – продуцентов ферментов, в том числе этапы получения посевного материала и производственной культуры соответствующего микроорганизма.

Глубинный метод культивирования продуцентов ферментов. В этом случае микроорганизмы выращиваются в жидкой питательной среде. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.

При глубинном культивировании продуцентов ферментов выделяют, как и в любом биотехнологическом процессе, следующие этапы:

Приготовление питательных сред зависит от состава компонентов. Основными этапами подготовки питательной среды являются ее составлеине и стерилизация. Важнейшим фактором эффективности технологии ферментных препаратов является качество питательной среды. Основное требование к качеству питательной среды – полноценность ее состава, обеспечивающей рост соответствующего продуцента и биосинтез целевого фермента. Для культивирования ферментных продуцентов используют комплексные питательные среды, в состав которых входят отходы пищевых производств. Благодаря использованию отходов комплексные питательные среды доступны, дешевы и обеспечивают безотходность биотехнологических производств

Получение засевного материала. Для засева питательной среды материал готовят также глубинным методом. Вид его зависит от продуцента: для грибов это мицелиальная вегетативная масса, для бактерий – молодая растущая культура на начальной стадии спорообразования. Получение посевного материала состоит в увеличении массы продуцента в 3 – 4 стадии. Объем посевного материала зависит от физиологических особенностей продуцента. Если продуцент размножается только вегетативно, он резко возрастает (до 5 – 20 %).

Производственное культивирование. Биосинтез ферментов в глубинной культуре протекает в течение 2 – 4 суток при непрерывной подаче воздуха и перемешивании. Высокая концентрация питательных веществ на первых этапах могут тормозить рост биомассы продуцента, поэтому часто свежая среда или некоторые её компоненты вводятся в ферментер на стадии активного роста. Температурный оптимум находится в интервале 22 – 32 о С. В современных технологических процессах ведется непрерывное автоматическое определение содержания в среде углеводов, количества образовавшихся метаболитов и концентрации клеток. Этим достигается максимальная производительность и наилучшее качество продуктов.

Выделение. В мицелии трёхсуточной культуры обычно остается не более 15 % ферментов. Остальные выделяются в окружающую клетки жидкую среду. В этом случае препараты ферментов выделяют из фильтратов после отделения биомассы.

Поверхностный метод культивирования продуцентов ферментов. При поверхностном методе культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и довольно прочно скрепляет твердые частицы субстрата, из которого получают питательные вещества. Поскольку для дыхания клетки используют кислород, то среда должна быть рыхлой, а слой культуры-продуцента небольшим. Выращивание производственной культуры происходит обычно в асептических условиях. Преимущества поверхностной культуры: значительно более высокая конечная концентрация фермента на единицу массу среды (при осахаривании крахмала 5 кг поверхностной культуры заменяют 100 кг культуральной жидкости), поверхностная культура относительно легко высушивается, легко переводится в товарную форму.

Приготовление питательных сред. Основу питательной среды составляют пшеничные отруби, как источник необходимых питательных и ростовых веществ. Кроме того, они создают необходимую структуру среды. Для повышения активности ферментов к отрубям можно добавлять свекловичный жом, соевый шрот, крахмал, растительные отходы. Стерилизуют среду острым паром при помешивании (температура – 105 – 140 о С, время 60 – 90 минут). После этого среду засевают и раскладывают ровным слоем в стерильных кюветах. Кюветы помещают в растильные камеры. Культивируют в течение 36 – 48 часов.

Получение засевного материала. Посевной материал может быть трех видов:

· культура, выросшая на твердой питательной среде;

· мицелиальная культура, выращенная глубинным способом.

Засевной материал получают в три этапа. Сначала музейную культуру продуцента пересевают на 1 – 1.5 г увлажненных стерильных пшеничных отрубей в пробирку и выращивают в термостате до обильного спорообразования. Второй этап – аналогично, но в колбах, третий – в сосудах с 500 г среды.

Производственное культивирование также делится на три периода, примерно равных по времени. Для создания благоприятных условий роста и развития продуцента необходима аэрация и поддержание оптимальной влажности (55 – 70 %):

· набухание конидий и их прорастание (температура не ниже 28 о С);

· рост мицелия в виде пушка серовато-белого цвета (необходимо выводить выделяемое тепло)

Получение товарной формы. Выросшая в неподвижном слое при поверхностном культивировании культура представляет корж из набухших частиц среды, плотно связанных сросшимся мицелием. Массу размельчают до гранул 55 мм. Культуру высушивают до 10 – 12 % влажности при температурах не выше 40 о С..

Выделение и очистка ферментных препаратов. Схема очистки сводится к следующему:

· освобождение от нерастворимых веществ;

Читайте также:  Социализация индивида это способ удовлетворения

· освобождение от сопутствующих растворимых веществ;

· фракционирование (как правило, хроматографическими методами).

Исходным материалом для получения препаратов ферментов служат: биомасса продуцента, фильтрат культуральной жидкости, экстракт из культуры микроорганизма или из тканей и органов растений и животных, из которых готовят препараты различной степени очистки.

Выделение и очистка фермента как из культуры микроорганизма (выращенного любым способом), так и из других природных источников весьма трудоемкая и дорогостоящая процедура, поэтому, если фермент можно использовать в виде неочищенного препарата, его не очищают. В промышленности широко применяют коммерческие препараты ферментов, чистота которых составляет всего 0,1 % (т.е. 99,9 % составляют примеси). К таким отраслям относятся спиртовая, кожевенная, текстильная промышленность, а также сельское хозяйство, производство бытовой химии. Например, ферментный препарат, употребляемый в пивоварении, представляет собой высушенную биомассу плесневых грибов.

В пищевой и особенно медицинской промышленности используются ферменты только высокой степени очистки.

Выделение ферментов из клеток продуцентов. Для выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала вплоть до разрушения субклеточных структур: лизосом, митохондрий, ядер и др., которые имеют в своем составе многие индивидуальные ферменты. Для этого используют специальные мельницы и гомогенизаторы, а также ультразвук, метод попеременного замораживания и оттаивания ткани. Для высвобождения ферментов из мембранных структур клетки к гомогенатам добавляют небольшие количества детергентов (твин, тритон Х-100) или обрабатывают их энзимами – лизоцимом, целлюлазой, лецитиназой С. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка (нейтральные значения рН, стабилизирующие добавки в виде белков, солей и специальных соединений).

Удаление балластных веществ. В зависимости от свойств выделяемого фермента и сопутствующих ему балластных веществ при получении очищенных препаратов ферментов комбинируют различные приемы и методы, такие, как термическое фракционирование, осаждение органическими растворителями, солями и тяжелыми металлами, фильтрация на молекулярных ситах, ионообменная хроматография, электрофорез, изоэлектрофокусирование.

На заключительных этапах очистки часто используют аффинную хроматографию (биоспецифическая хроматография, хроматография по сродству), основанную на способности ферментов избирательно связывать те или иные лиганды – субстраты коферменты, конкурентные ингибиторы, аллостерические эффекторы и т.п. Такое связывание весьма специфично, что позволяет выделить тот или иной энзим из множества других белков. Например, из желудочного сока человека методом одноэтапной аффинной хроматографии выделена кислая липаза, использующаяся в заместительной терапии при заболеваниях печени.

Для синтеза аффинного сорбента, соответствующего специфичности данного фермента, лиганд (субстрат или его аналог) присоединяют к инертной матрице (макропористые гидрофильные гели, синтетические полимеры, неорганические носители). Для уменьшения пространственных трудностей при взаимодействии фермента с матрицей лиганд присоединяют к носителю через промежуточное звено (вставку, ножку, спейсер).

В процессе выделения повышается доля фермента в массе тотальных белков, т.е. увеличивается его удельная активность. В производственных условиях активность получаемого ферментного препарата оценивается количеством субстрата, преобразованного 1 мг (1кг) препарата при оптимальных условиях за 1 мин, и измеряется в моль/мг или каталах/кг белка.

Очищенные ферментные препараты хранят при низкой температуре (до –80 °С). Для стабилизации ферментов в их препараты добавляют коферменты и субстраты. Ферментные препараты для промышленного применения стабилизируют, добавляя глицерин, моносахариды, дисахариды (глюкоза, сахароза, лактоза), HS-coединения (цистеин, глутатион, меркаптоэтанол, дитиотреитол и др.), отдельные аминокислоты, желатину и другие белки-наполнители.

Учитывая огромные перспективы применения ферментных препаратов в различных отраслях промышленности и сельского хозяйства, медицине, можно сделать заключение о необходимости расширения исследований в этой области для оптимизации технологии и гарантийного получения высокоактивных и стабильных препаратов микробных ферментов.

Иммобилизованные ферменты

Одна из задач инженерной энзимологии состоит в разработке технологии получения и использования иммобилизованных ферментов. Иммобилизованными ферментами называются ферменты, искусственно связанные с нерастворимым носителем, но сохраняющие свои каталитические свойства. Начало этому направлению биотехнологии было положено в 1916 году, когда Дж.Нельсон и Е.Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность.

В настоящее время в понятие «иммобилизация» вкладывают более широкий смысл – полное или частичное ограничение свободы движения белковых молекул.

Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами:

· представляют собой гетерогенные катализаторы, легко отделяемые от реакционной среды, что дает возможность остановить реакцию в любой момент, использовать фермент повторно, а также получать чистый от фермента продукт;

· могут использоваться многократно и обеспечивают непрерывность каталитического процесса;

· изменяют свои свойства: субстратную специфичность, устойчивость, зависимость активности от параметров среды;

· долговечны в тысячи и десятки тысяч раз стабильнее свободных энзимов.

Все перечисленное обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использующих иммобилизованные ферменты.

Иммобилизовать ферменты можно как путем связывания на нерастворимых носителях, так и путем внутримолекулярной или межмолекулярной сшивки белковых молекул низкомолекулярными бифункциональными соединениями, а также путем присоединения к растворимому полимеру.

Носители для иммобилизации ферментов. К носителям предъявляются следующие требования:

Читайте также:  Способы соединения деталей конструктора лего

· высокая химическая и биологическая стойкость;

· высокая химическая прочность;

· достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность;

· возможность получения в виде удобных в технологическом отношении форм (гранул, мембран);

Для получения иммобилизованных ферментов используется ограниченное число как органических, так и неорганических носителей (рис. 7.1).

НОСИТЕЛИ
ОРГАНИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ
НИЗКОМОЛЕКУЛЯРНЫЕ ПОЛИМЕРНЫЕ МАКРОПОРИСТЫЕ ДРУГИЕ

Рис. 7.1. Классификация носителей для иммобилизованных ферментов

Органические полимерные носители. Существующие органические полимерные носители можно разделить на два класса: природные (белковые, полисахаридные и липидные) и синтетические полимерные носители (полиметиленовые, полиамидные и полиэфирные).

Преимущества природных носителей: доступность, полифункциональность и гидрофильность; недостатки: биодеградируемость и высокую стоимость.

Из полисахаридов для иммобилизации наиболее часто используют целлюлозу, декстран, агарозу и их производные. Для придания химической устойчивости линейные цепи целлюлозы и декстрана поперечно сшивают эпихлоргидрином. В полученные сетчатые структуры вводят различные ионогенные группировки. Химической модификацией крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) синтезирован новый носитель – губчатый крахмал, обладающий повышенной устойчивостью к гликозидазам.

Из природных аминосахаридов в качестве носителей применяют хитин. Хитин химически стоек и имеет хорошо выраженную пористую структуру.

Среди белков в качестве носителей применяют структурные протеины, – кератин, фиброин, коллаген и желатина (продукт переработки коллагена). Белки способны к биодеградации, что очень важно при конструировании иммобилизованных ферментов для медицинских целей. К недостаткам белков как носителей в этом случае следует отнести их высокую иммуногенность.

Синтетические полимерные носители. Большинство синтетических полимерных носителей обладают механической прочностью, и возможностью варьирования в широких пределах величины пор. Некоторые синтетические полимеры могут быть произведены в различных физических формах (трубы, волокна, гранулы). К ним относятся полимеры на основе стирола, акриловой кислоты, поливинилового спирта; полиамидные и полиуретановые полимеры.

Носители неорганической природы. В качестве носителей наиболее часто применяют материалы из стекла, глины, керамики, графитовой сажи, силикагеля, а также силохромы, оксиды металлов. Их можно подвергать химической модификации, для чего носители покрывают пленкой оксидов алюминия, титана, циркония или обрабатывают органическими полимерами. Основное преимущество неорганических носителей – легкость регенерации. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористости.

Методы иммобилизации ферментов

Существуют два принципиально различных метода иммобилизации ферментов: физические (без возникновения ковалентных связей между ферментом и носителем) и химические (с образованием ковалентной связи между ними) (рис. 7.2).

а б в г д
Рис 7.2. Методы иммобилизации ферментов Физические методы иммобилизации: а – адсорбция; б – включение в гель; в – инкапсулирование; г – включение в липосомы; Химические методы иммобилизации: д – ковалентные связывание

Физические методы иммобилазации представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов.

Адсорбция ферментов на нерастворимых носителях. Адсорбция была первым методом иммобилизации ферментов и стала наиболее широко распространенным способом получения иммобилизованных ферментов в промышленности. В качестве адсорбентов используют кремнезем, активированный уголь, графитовая сажа, различные глины, пористое стекло, полисахариды, синтетические полимеры, оксиды алюминия, титана и других металлов. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счет электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Эффективность адсорбции определяется удельной поверхностью (плотностью центров сорбции) и пористостью носителя.

Процесс адсорбции ферментов на нерастворимых носителях отличается простотой и достигается при контакте водного раствора фермента с носителем (статистическим способом, при перемешивании, динамическим способом с использованием колонок). С этой целью раствор фермента смешивают со свежим осадком, например, гидроксида титана, и высушивают в мягких условиях. Активность фермента при таком варианте иммобилизации сохраняется практически на 100 %, а удельная концентрация белка достигает 64 мг на 1 г носителя.

К недостаткам адсорбционного метода относится невысокая прочность связывания фермента с носителем (при изменении условий иммобилизации могут происходить десорбция фермента, его потеря и загрязнение продуктов реакции). Прочность связывания фермента с носителем может повысить предварительная модификация носителя (обработка ионами металлов, полифункциональными агентами – полимерами, белками, гидрофобными соединениями, монослоем липида и пр.). Иногда, модификации подвергается молекула исходного фермента, однако зачастую это ведет к снижению его активности.

Иммобилизация ферментов путем включения в гель. Способ иммобилизации ферментов путем включения в трехмерную структуру полимерного геля широко распространен благодаря своей простоте и уникальности. Метод применим для иммобилизации не только индивидуальных ферментов, но и мулътиэнзимных комплексов и даже интактных клеток. Иммобилизацию ферментов в геле осуществляют двумя способами:

· фермент вводят в водный раствор мономера, а затем проводят полимеризацию, в результате которой возникает пространственная структура полимерного геля с включенными в его ячейки молекулами фермента; используют гели полиакриламида, поливинилового спирта, поливинилпирролидона, силикагеля;

Читайте также:  Основные способы словообразования существительного

· фермент вносят в раствор уже готового полимера, который впоследствии переводят в гелеобразное состояние; используют гели крахмала, агар-агара, каррагинана, агарозы, фосфата кальция.

К преимуществам иммобилизация ферментов в гелях относят:

· равномерное распределение энзима в объеме носителя;

· высокая механическая, химическая, тепловая и биологическая стойкость матрицы;

· возможность многократного использования фермента, включенного в его структуру.

Однако метод непригоден для иммобилизации ферментов, действующих на водонерастворимые субстраты.

Иммобилизация ферментов в полупроницаемые структуры. Сущность этого способа иммобилизации – отделении водного раствора фермента от водного раствора субстрата с помощью полупроницаемой мембраны, пропускающей низкомолекулярные молекулы субстратов и кофакторов, но задерживающей большие молекулы фермента.

Наибольшее распространение получили две модификации этого метода – микрокапсулирование и включение ферментов в липосомы.

Микрокапсулирование состоит в том, что водный раствор фермента включается внутрь замкнутой микрокапсулы, стенки которой образованы полупроницаемым полимером.

Размер получаемых капсул составляет десятки или сотни микрометров, а толщина мембраны – сотые доли микрометра.

Достоинства метода микрокапсулирования:

· возможность многократного использования нативного фермента (фермент может быть отделен от непрореагировавшего субстрата и продуктов реакции процедурой простого фильтрования);

· возможность иммобилизовать не только индивидуальные ферменты, но и мультиэнзимные комплексы, целые клетки и отдельные фрагменты клеток.

К недостаткам метода следует отнести невозможность инкапсулированных ферментов осуществлять превращения высокомолекулярных субстратов.

Включение водных растворов ферментов в липосомы. Для получения липосом из растворов липида (чаще всего лецитина) упаривают органический растворитель. Оставшуюся тонкую пленку липидов диспергируют в водном растворе, содержащем фермент. В процессе диспергирования происходит самосборка бислойных липидных структур липосомы, содержащих включенный раствор фермента.

Ферменты, иммобилизованные путем включения в структуру липосом, используют преимущественно в медицинских и научных целях. Изучение липосом имеет большое значение для понимания закономерностей процессов жизнедеятельности клетки, поскольку значительная часть ферментов в клетке локализована в составе липидного матрикса биологических мембран.

Химические методы иммобилизации ферментов. Иммобилизация ферментов путем образования новых ковалентных связей между ферментом и носителем – наиболее массовый способ облучения промышленных биокатализаторов.

В отличие от физических методов этот способ иммобилизации обеспечивает прочную и необратимую связь фермента с носителем и часто сопровождается стабилизацией молекулы энзима. Однако расположение фермента относительно носителя на расстоянии одной ковалентной связи создает трудности в осуществлении каталитического процесса. Фермент отделяют от носителя с помощью вставки (сшивка, спейсер), в роли которой чаще всего выступают бифункциональные и полифункциональные агенты (бромциан, гидразин, сульфурилхлорид, глутаровый диальдегид и др.).

Принципиально важно, чтобы в иммобилизации фермента участвовали функциональные группы, не существенные для его каталитической функции. Так, гликопротеины обычно присоединяют к носителю через углеводную, а не через белковую часть молекулы фермента.

Все методы химической иммобилизации классифицируют в зависимости от природы реакционной группы носителя, вступающей во взаимодействие с молекулой фермента.

Иммобилизация ферментов на носителях, обладающих гидроксогруппами. Наиболее распространенным методом образования ковалентной связи между ферментом и полисахаридным носителем или синтетическим диольным соединением является бромциановый метод. При обработке носителя бромцианом возникают реакционноспособные цианаты и имидокарбонаты, которые при взаимодействии с нуклеофильными аминогруппами фермента образуют производные изомочевины и уретанов:

Иммобилизация ферментов на носителях, обладающих аминогруппами. Первичные аминогруппы носителя, связанные с ароматическим кольцом, предварительно превращают в соли диазония, которые затем подвергают разнообразным реакциям сочетания. В реакции сочетания вступают фенольные, имидазольные, аминные, гуанидиновые, тиольньте группы белков.

Иммобилизация на носителях, обладающих активированными производными карбоксильной группы. Наиболее часто для соединения аминогрупп белка с ацильными группировками носителя используют ангидриды, галогенангидриды, активированные эфиры и другие производные карбоновых кислот.

Иммобилизация на носителях, обладающих сульфгидрильными группами. Сульфгидрильные группы носителя и фермента легко окисляются с образованием дисульфидных связей под действием кислорода воздух:

Преимущества химической иммобилизации – высокая эффективность и прочность связи. Однако, методы ковалентной иммобилизации малодоступны для промышленного использования в связи со сложностью и дороговизной их применения.

Иммобилизация клеток

Использование иммобилизованных клеток исключает необходимость выделения и очистки ферментных препаратов, применение кофакторов; создает возможность получения полиферментных систем, осуществляющих многостадийные непрерывно действующие процессы.

В промышленных процессах чаще используют покоящиеся клетки (в стационарной фазе). Растущие клетки нарушают структуру носителя. Образующиеся при делении дочерние клетки, покидая носитель, загрязняют целевой продукт. Для подавления роста иммобилизованных клеток растений используют дефицит фитогормонов, а рост клетки бактерий тормозят добавлением антибиотиков.

Иммобилизованные клетки микроорганизмов применяют для биотрансформации органических соединений, разделения рацемических смесей, гидролиза ряда сложных эфиров, инверсии сахарозы, восстановления и гидроксилирования стероидов. Иммобилизованные хроматофоры используют в лабораторных установках для синтеза АТФ, а пурпурные мембраны – для создания искусственных фотоэлектрических преобразователей – аналогов солнечных батарей. Разрабатывается реактор на основе иммобилизованных клеток дрожжей для получения этанола из мелассы в котором дрожжи сохраняли бы способность к спиртовому брожению в течение 1800 ч.

Источник

Оцените статью
Разные способы