Методы решения системы уравнения графическим способом

Методы решения системы уравнения графическим способом

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Читайте также:  Способ защиты трудовых прав предусмотрен законом для работодателя

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Источник

Графический способ решения систем уравнений

Урок 16. Алгебра 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Графический способ решения систем уравнений»

Графиками таких уравнений могут являться различные линии.

Решить систему — значит найти все её решения или доказать, что их нет.

Решением системы называется пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство.

Нужно проверить, обращают ли пара значений уравнения системы в верные равенства.

1. Первая пара (-2, 1). Подставим их в систему:

Первое уравнение обратилось в верное равенство, а второе — нет. Значит, пара чисел (-2;1) не является решением данной системы.

2. Вторая пара (1;-2). Поставим эти значения в систему:

Получаем два верных равенства. Значит, пара чисел (1;-2) является решением данной системы.

Решить систему двух уравнений:

Изобразим график системы:

Видим, что графики пересеклись в двух точках. Их координаты и являются решением системы. Данная система имеет два решения: (0;3) и (3;0).

Проверим, действительно ли они являются решениями. Подставим эти значения в систему:

Проверка необходима потому, что графический метод позволяет получить приближённые значения. Иногда их сложно указать точно.

Читайте также:  Все способы получения сульфата алюминия

Получили две пары значений: (0;3) и (3;0).

Решить систему уравнений:

Изобразим график системы:

Точку пересечения этих графиков имеет координаты (0;1). Подставим значения в систему:

Получили верные равенства. Значит, решением данной системы является пара чисел (0;1).

Решить систему двух уравнений:

Изобразим график системы:

Видим две точки пересечения. Их координаты трудно указать точно. Поэтому прежде чем записать ответ, полученные значения нужно подставить в систему:

Решением системы будут две пары чисел(2,5;2,5) и (6,5;6,5).

Источник

Алгебра. 9 класс

Вспомним основные понятия.

Решение уравнения с двумя переменными – это пара значений переменных, которая обращает это уравнение в верное равенство.

Решение системы уравнений с двумя переменными – это пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – это значит найти все её решения, или убедиться, что общих решений у исходных уравнений нет.

Чтобы решить систему уравнений графическим способом нужно построить графики уравнений, входящих в систему, на одной координатной плоскости и найти точки их пересечения.

Вспомним основные виды графиков.

y = kx + b, где k и b – некоторые числа

, где a, b, c и d – некоторые числа, с ≠ 0, adbc ≠ 0

, где n – некоторое чётное число

, где n – некоторое нечётное число

y = x n , где n – некоторое чётное число

y = x n , где n – некоторое нечётное число

Решим несколько задач.

Решите графическим способом систему уравнений

Приведём уравнения к виду, удобному для построения графиков.

Сначала первое уравнение:
x 2 + y 2 = 5 + 2x + 4y;
x 2 – 2x + 1 – 1 + y 2 – 4y + 4 – 4 = 5;
(x – 1) 2 + (y – 2) 2 – 5 = 5;
(x – 1) 2 + (y – 2) 2 = 10.

Теперь второе уравнение:
2x = y – 5;
y = 2x + 5.

Теперь построим графики уравнений на одной координатной плоскости.

Используя чертёж найдем координаты точек пересечения графиков. Получим две точки: А(0; 5) и B(–2; 1).

Подставим найденные значения переменных, чтобы убедиться, что мы нашли точные, а не приближённые решения системы.

Определите, сколько решений может иметь система уравнений в зависимости от значений b

Читайте также:  Три способа переработки нефти

Графиком первого уравнения системы является парабола с вершиной в точке (0; –3).

Графиком второго уравнения системы является окружность с центром в точке (0; 0) и радиусом b.

Построим в одной системе координат график первого уравнения и возможные варианты графика второго уравнения, начиная с маленького радиуса окружности и постепенно его увеличивая.

Таким образом, в зависимости от значения b система может не иметь решений, может имеет 2, 3 или 4 решения.

Источник

Графический метод решения систем уравнений

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

1. Строим график 1-го уравнения;

2. Строим график 2-го уравнения;

3. Найти точки пересечения графиков.

4. Координаты каждой точки пересечения будут решением системы уравнений.

Пример: Решить графическим методом

Решение уравнений

1. Построить график уравнения: x 2 +y 2 =9.

Графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Построить график уравнения: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).

3. Прямая пересекает окружность в двух ее точках A и B.

Практические задания

1. Решите систему уравнений методом подстановки:

а) б) в ) г)

2. Решите систему уравнений методом алгебраического сложения:

3. Решить систему уравнений методом введения новых переменных:

а) б) в)

УЧЕБНАЯ КАРТА ПРАКТИЧЕСКОГО ЗАНЯТИЯ №6

Источник

Оцените статью
Разные способы