Методы оценки объемных показателей генеральной совокупности способ коэффициентов

Методы оценки объемных показателей генеральной совокупности способ коэффициентов

1. Задачи математической статистики.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика — это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

В американском журнале «Литературное обозрение» с помощью статистических методов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

Читайте также:  Актовегин ампулы способ хранения

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).

Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x1 –наблюдалось раз, x2-n2 раз,… xk — nk раз. n = n1+n2+. +nk– объем выборки. Наблюдаемые значения называются вариантами, а последовательность вариант, записанных в возрастающем порядке- вариационным рядом. Числа наблюдений называются частотами (абсолютными частотами), а их отношения к объему выборки — относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

Источник

Статистические оценки параметров генеральной совокупности

Определение статистической оценки. Точечные статистические оценки: смещенные и несмещенные, эффективные и состоятельные. Интервальные статистические оценки. Точность и надежность оценки; определение доверительного интервала; построение доверительных интервалов для средней при известном и неизвестном среднеквадратическом отклонении.

Определение статистической оценки

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности по нормальному закону, то необходимо оценить математическое ожидание и среднеквадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение. Если имеются основания считать, что признак имеет распределение Пуассона, то необходимо оценить параметр , которым это распределение определяется. Обычно имеются лишь данные выборки, полученные в результате наблюдений: . Через эти данные и выражают оцениваемый параметр. Рассматривая как значения независимых случайных величин можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения означает найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.

Точечные статистические оценки

Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистическая оценка неизвестного параметра генеральной совокупности одним числом называется точечной . Рассмотрим следующие точечные оценки : смещенные и несмещенные, эффективные и состоятельные.

Читайте также:  Наглядно образное мышление это способ решения задач

Для того чтобы статистические оценки давали хорошие приближения оцениваемых параметров, они должны удовлетворять определенным требованиям. Укажем эти требования. Пусть есть статистическая оценка неизвестного параметра теоретического распределения. Допустим, что по выборке объема найдена оценка . Повторим опыт, т. е. извлечем из генеральной совокупности другую выборку того же объема и по ее данным найдем оценку и т. д. Получим числа , которые будут различаться. Таким образом, оценку можно рассматривать как случайную величину, а числа — как возможные ее значения.

Если оценка дает приближенное значение с избытком, то найденное по данным выборок число будет больше истинного значения . Следовательно, и математическое ожидание (среднее значение) случайной величины будет превышать , то есть \Theta» png;base64,iVBORw0KGgoAAAANSUhEUgAAAGcAAAAXBAMAAADkTUwLAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAwYEpXRBBkaHQCfCx4HH7NQOIAAACB0lEQVQ4y61Tv0sjURD+Nm8TE+IlWRQ5G11SXOveIVikyA+0NieCCh7ZLpXsFsc1V+ihiGCh+AMFEf8GDcJdJ4LXXGEQOwuvOGx1vajNne9mdjch2XCQwle8NzNvvnkz38wDXnCFO3f92JAUo1lrX+k0OeBdWkfCBiJf+heBaH7WQMxs881rF0VXKEud9sFLAxkyfDZxm4NY/Q6IShAzs4lpz5g4J1BonrYBeuIRUGtQ908pwEqw0D0y/uC8ELVSwMi8CfEAsIxrI/Q+QXcZN5VPDVCoRlu2yuKrODmeHQBddJ7nyDJkI8rxkqxgYqsOiv9mihiJt8od1DEHiBEPcpjSs6o+hQvwUF7xsCpUbfmJxUL3A2bVewqsIywVTdOsOz+dlHdObHio8b5DrT/tsLgcesRiFxFQorKkIqXTAPknVA811Cel9EBVtRbRY3RvUV/kFNXWBoK6yyirx4Yo/CFJpCL3CkqUSZZAB9zQ25M20GsGlVjvfmZdF09vME5tSpoucT6FLentuM1xiYsfc5tM/LWxRoDkT+ADmYRT78u6d076RET4gsMjY+CqiGsORK+Ib0XMbNen9qSFPAIsQHzlBksHvWGizGd4+qh8VPfhp5ubC6H9Ws21jhaPETB80zBk3UqWml1GjeAQ9wb0lU7+4Fzg5UonINVuUZVcR9996T+f/yXWPxABhZZDOY0/AAAAAElFTkSuQmCC» style=»vertical-align: middle;»/>. Если дает приближенное значение с недостатком, то .

Использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим ошибкам. Поэтому нужно потребовать, чтобы математическое ожидание оценки было равно оцениваемому параметру. Соблюдение требования устраняет систематические ошибки.

Несмещенной называют статистическую оценку , математическое ожидание которой равно оцениваемому параметру , то есть .

Смещенной называют статистическую оценку , математическое ожидание которой не равно оцениваемому параметру.

Однако ошибочно считать, что несмещенная оценка всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения могут быть сильно рассеяны вокруг своего среднего значения, т. е. дисперсия величины может быть значительной. В этом случае найденная по данным одной выборки оценка, например , может оказаться удаленной от своего среднего значения , а значит, и от самого оцениваемого параметра . Приняв в качестве приближенного значения , мы допустили бы ошибку. Если потребовать, чтобы дисперсия величины была малой, то возможность допустить ошибку будет исключена. Поэтому к статистической оценке предъявляются требования эффективности.

Эффективной называют статистическую оценку, которая (при заданном объеме выборки ) имеет наименьшую возможную дисперсию. При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности.

Состоятельной называют статистическую оценку, которая при стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при стремится к нулю, то такая оценка оказывается также состоятельной.

Рассмотрим вопрос о том, какие выборочные характеристики лучше всего в смысле несмещённости, эффективности и состоятельности оценивают генеральную среднюю и дисперсию.

Пусть изучается дискретная генеральная совокупность относительно количественного признака. Генеральной средней называется среднее арифметическое значений признака генеральной совокупности. Она вычисляется по формуле

где — значения признака генеральной совокупности объема ; — соответствующие частоты, причем

Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена выборка объема со значениями признака . Выборочной средней называется среднее арифметическое значений признака выборочной совокупности и вычисляется по формуле

где — значения, признака в выборочной совокупности объема ; — соответствующие частоты, причем

Если генеральная средняя неизвестна и требуется оценить ее по данным выборки, то в качестве оценки генеральной средней принимают выборочную среднюю, которая является несмещенной и состоятельной оценкой. Отсюда следует, что если по нескольким выборкам достаточно большого объема из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближенно равны между собой. В этом состоит свойство устойчивости выборочных средних .

Если дисперсии двух совокупностей одинаковы, то близость выборочных средних к генеральным не зависит от отношения объема выборки к объему генеральной совокупности. Она зависит- от объема выборки: чем больше объем выборки, тем меньше выборочная средняя отличается от генеральной.

Для того чтобы охарактеризовать рассеяние значений количественного признака генеральной совокупности вокруг своего среднего значения, вводят сводную характеристику — генеральную дисперсию. Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения , которое вычисляется по формуле

Для того чтобы охарактеризовать рассеяние наблюденных значений количественного признака выборки вокруг своего среднего значения хв, вводят сводную характеристику — выборочную дисперсию. Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюденных значений признака от их среднего значения , которое вычисляется по формуле

Читайте также:  Заново каким способом образовано

Кроме дисперсии для характеристики рассеяния значений признака генеральной (выборочной) совокупности вокруг своего среднего значения используют сводную характеристику — среднее квадратическое отклонение. Генеральным средним квадратическим отклонением называют квадратный корень из генеральной дисперсии: . Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии: .

Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена выборка объема . Требуется по данным выборки оценить неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка приведет к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что выборочная дисперсия является смещенной оценкой . Другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно .

Легко исправить выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Для этого нужно умножить на дробь . В результате получим исправленную дисперсию , которая будет несмещенной оценкой генеральной дисперсии:

Интервальные оценки

Наряду с точечным оцениванием, статистическая теория оценивания параметров занимается вопросами интервального оценивания. Задачу интервального оценивания можно сформулировать так: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри него находится оцениваемый параметр. Интервальное оценивание особенно необходимо при малом количестве наблюдений, когда точечная оценка малонадежна.

Доверительным интервалом для параметра называется такой интервал, относительно которого с заранее выбранной вероятностью , близкой к единице, можно утверждать, что он содержит неизвестное значение параметра , то есть . Чем меньше для выбранной вероятности число , тем точнее оценка неизвестного параметра . И, наоборот, если это число велико, то оценка, проведенная с помощью данного интервала, малопригодна для практики. Так как концы доверительного интервала зависят от элементов выборки, то значения и могут изменяться от выборки к выборке. Вероятность принято называть доверительной (надежностью). Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Выбор доверительной вероятности не является математической задачей, а определяется конкретной решаемой проблемой. Наиболее часто задают надежность, равную 0,95; 0,99; 0,999.

Доверительный интервал для генеральной средней при известном значении среднего квадратического отклонения и при условии, что случайная величина (количественный признак ) распределена нормально, задается выражением

где — наперед заданное число, близкое к единице, а значения функции приведены в таблице прил. 2.

Смысл этого соотношения заключается в следующем: с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр , точность оценки . Число определяется из равенства , или . По прил. 2 находят аргумент , которому соответствует значение функции Лапласа, равное .

Пример 1. Случайная величина имеет нормальное распределение с известным средним квадратическим отклонением . Найти доверительные интервалы для оценки неизвестной генеральной средней по выборочным средним, если объем выборок и надежность оценки .

Решение. Найдем . Из соотношения получим, что . По прил. 2 находим . Найдем точность оценки . Доверительные интервалы будут таковы: . Например, если , то доверительный интервал имеет следующие доверительные границы: . Таким образом, значения неизвестного параметра , согласующиеся с данными выборки, удовлетворяют неравенству .

Доверительный интервал для генеральной средней нормального распределения признака при неизвестном значении среднего квадратического отклонения задается выражением

Отсюда следует, что с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр .

Существуют таблицы (прил. 4), пользуясь которыми, по заданным и находят вероятность и, наоборот, по заданным и находят .

Пример 2. Количественный признак генеральной совокупности распределен нормально. По выборке объема найдены выборочная средняя и исправленное среднеквадратическое отклонение . Оценить неизвестную генеральную среднюю с помощью доверительного интервала с надежностью .

Решение. Найдем . Пользуясь прил. 4 по и находим . Найдем доверительные границы:

Итак, с надежностью неизвестный параметр заключен в доверительном интервале .

Источник

Оцените статью
Разные способы