- Метан, Methane
- Источники и получение метана
- Свойства метана
- Применение метана
- Автомобильное топливо
- Метан и парниковый эффект
- Метан, получение, свойства, химические реакции
- Метан, получение, свойства, химические реакции.
- Метан, формула, газ, характеристики:
- Физические свойства метана:
- Химические свойства метана:
- Получение метана в промышленности и в лаборатории. Химические реакции – уравнения получения метана:
- Применение и использование метана:
Метан, Methane
Часто этот взрывоопасный газ называют «болотным». Всем известен его специфический запах, но на самом деле это — специальные добавки «с запахом газа», которые добавляются для того, чтобы его распознать. При сгорании он практически не оставляет вредных продуктов. Помимо всего прочего, этот газ довольно активно участвует в образовании всем известного парникового эффекта.
Метан — газ, обычно связанный с живыми организмами. Когда в атмосферах Марса и Титана обнаружился метан, у ученых появилась надежда на то, что на этих планетах существует жизнь. На Красной планете метана немного, а вот Титан буквально «залит» им. И уж если не для Титана, то для Марса биологические источники метана столь же вероятны, как и геологические. Метана много на планетах-гигантах — Юпитере, Сатурне, Уране и Нептуне, где он возник как продукт химической переработки вещества протосолнечной туманности. На Земле он редок: его содержание в атмосфере нашей планеты — всего 1750 частей на миллиард по объему (ppbv).
Источники и получение метана
Метан — простейший углеводород, бесцветный газ без запаха. Его химическая формула — CH4. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты со специфическим «запахом газа». Основной компонент природных (77—99%), попутных нефтяных (31—90%), рудничного и болотного газов (отсюда другие названия метана — болотный или рудничный газ).
На 90–95% метан имеет биологическое происхождение. Травоядные копытные животные, такие как коровы и козы, испускают пятую часть годового выброса метана: его вырабатывают бактерии в их желудках. Другими важными источниками служат термиты, рис-сырец, болота, фильтрация естественного газа (это продукт прошлой жизни) и фотосинтез растений. Вулканы вносят в общий баланс метана на Земле менее 0,2%, но источником и этого газа могут быть организмы прошлых эпох. Промышленные выбросы метана незначительны. Таким образом, обнаружение метана на планете типа Земли указывает на наличие там жизни.
Метан образуется при термической переработке нефти и нефтепродуктов (10—57% по объёму), коксовании и гидрировании каменного угля (24—34%). Лабораторные способы получения: сплавление ацетата натрия со щелочью, действие воды на метилмагнийиодид или на карбид алюминия.
В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и калия) или безводного гидроксида натрия с уксусной кислотой. Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.
Свойства метана
Метан горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1м 3 . С воздухом образует взрывоопасные смеси . Особую опасность представляет метан, выделяющийся при подземной разработке месторождений полезных ископаемых в горные выработки, а также на угольных обогатительных и брикетных фабриках, на сортировочных установках. Так, при содержании в воздухе до 5–6% метан горит около источника тепла (температура воспламенения 650—750 °С), от 5–6% до 14–16% взрывается, свыше 16% может гореть при притоке кислорода извне. Снижение при этом концентрации метана может привести к взрыву. Кроме того, значительное увеличение концентрации метана в воздухе бывает причиной удушья (например, концентрации метана 43% соответствует 12% O2).
Взрывное горение распространяется со скоростью 500—700 м/сек; давление газа при взрыве в замкнутом объёме равно 1 Мн/м 2 . После контакта с источником тепла воспламенение метана происходит с некоторым запаздыванием. На этом свойстве основано создание предохранительных взрывчатых веществ и взрывобезопасного электрооборудования. На объектах, опасных из-за присутствия метана (главным образом, угольные шахты), вводится т.н. газовый режим.
При 150-200 °С и давлении 30-90 атм метан окисляется до муравьиной кислоты.
Метан образует соединения включения — газовые гидраты, широко распространенные в природе.
Применение метана
Метан — наиболее термически устойчивый насыщенный углеводород. Его широко используют как бытовое и промышленное топливо и как сырьё для промышленности . Так, хлорированием метана производят метилхлорид, метиленхлорид, хлороформ, четырёххлористый углерод.
При неполном сгорании метана получают сажу , при каталитическом окислении — формальдегид , при взаимодействии с серой — сероуглерод .
Термоокислительный крекинг и электрокрекинг метана— важные промышленные методы получения ацетилена .
Каталитическое окисление смеси метана с аммиаком лежит в основе промышленного производства синильной кислоты. Метан используют как источник водорода в производстве аммиака, а также для получения водяного газа (т. н. синтез-газа): CH4 + H2O → CO + 3H2, применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и др. Важное производное метана — нитрометан .
Автомобильное топливо
Метан широко используется в качестве моторного топлива для автомобилей. Однако плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20–25 МПа (200–250 атмосфер). Для хранения газа в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.
Метан и парниковый эффект
Метан является парниковым газом . Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность метана составит 23 единицы. Содержание в атмосфере метана росло очень быстро на протяжении последних двух столетий.
Сейчас среднее содержание метана CH4 в современной атмосфере оценивается как 1,8 ppm (parts per million, частей на миллион). И, хотя это в 200 раз меньше, чем содержание в ней углекислого газа (CO2), в расчете на одну молекулу газа парниковый эффект от метана — то есть его вклад в рассеивание и удержание тепла, излучаемого нагретой солнцем Землей — существенно выше, чем от СО2. Кроме того, метан поглощает излучение Земли в тех «окошках» спектра, которые оказываются прозрачными для других парниковых газов. Без парниковых газов — СO2, паров воды, метана и некоторых других примесей средняя температура на поверхности Земли была бы всего –23°C , а сейчас она около +15°C.
Метан высачивается на дне океана через трещины земной коры, выделяется в немалом количестве при горных разработках и при сжигании лесов. Недавно обнаружен новый, совершенно неожиданный источник метана — высшие растения, но механизмы образования и значение данного процесса для самих растений пока не выяснены.
Недалеко от Санта-Барбары со дна океана в больших объемах в виде пузырьков выделяется метан – активный парниковый газ
Особенно опасен метан при проведении горных работ
Метан вместо бензина? Легко
Когда в атмосфере Марса был обнаружен метан, у ученых появилась надежда найти на планете следы жизни
Источник
Метан, получение, свойства, химические реакции
Метан, получение, свойства, химические реакции.
Метан, CH4 – простейший по составу предельный углеводород, органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе, в рудничном и болотном газах. Растворен в нефти, в пластовых и поверхностных водах. В твердом состоянии встречается в виде газогидратов.
Метан, формула, газ, характеристики:
Метан (лат. methanum) – простейший по составу предельный углеводород, органическое вещество класса алканов , состоящий из одного атома углерода и четырех атомов водорода.
Химическая формула метана CH4, рациональная формула CH4. Изомеров не имеет.
Метан – в обычных условиях лёгкий бесцветный газ, без вкуса и запаха. Однако в метан, используемый в качестве технического газа , могут добавляться одоранты — вещества, имеющие резкий неприятный запах для предупреждения его утечки.
Метан – это основной компонент природного газа .
Является одним из парниковых газов. Его вклад в парниковый эффект составляет 4-9 %.
В природе содержится в природном газе , добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе . Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа. Также содержится в рудничном и болотном газах (отсюда произошли другие названия метана – болотный или рудничный газ), свалочном газе .
В анаэробных условиях (в болотах, переувлажнённых почвах, на дне прудов и стоячих вод , где он образуется при разложении растительных остатков без доступа воздуха , в кишечнике жвачных животных, биореакторах, биогазовых установках и пр.) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.
В растворенном виде содержится в нефти, в пластовых и поверхностных водах. При переработке нефти метан выделяют отдельно для дальнейшего использования.
Помимо газообразного состояния в природе встречается еще и в твердом состоянии на дне морей, океанов и в зоне вечной мерзлоты в виде метаногидратов ( гидратов природного газа ), именуемых «горючий лёд».
Пожаро- и взрывоопасен.
Почти не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).
Метан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.
Физические свойства метана:
Наименование параметра: | Значение: |
Цвет | без цвета |
Запах | без запаха |
Вкус | без вкуса |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 | 0,6682 |
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м 3 | 0,7168 |
Плотность (при -164,6 °C и атмосферном давлении 1 атм.), кг/м 3 | 415 |
Температура плавления, °C | -182,49 |
Температура кипения, °C | -161,58 |
Температура самовоспламенения, °C | 537,8 |
Критическая температура*, °C | -82,4 |
Критическое давление, МПа | 4,58 |
Критический удельный объём, м 3 /кг | 0,0062 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | от 4,4 до 17,0 |
Удельная теплота сгорания, МДж/кг | 50,1 |
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) | 0,0302 |
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К) | 0,0361 |
Молярная масса, г/моль | 16,04 |
Растворимость в воде, г/кг | 0,02 |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Химические свойства метана:
Метан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами , галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Химические свойства метана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:
- 1. конверсия метана в синтез-газ:
CH4 + H2O → CО + 3H2 (kat = Ni/Al2O3 при t o = 800-900 о С или без катализатора при t o = 1400-1600 о С).
Образующийся в результате реакции синтез-газ может быть использован для последующих синтезов метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.
- 2. галогенирование метана:
Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы метана, отрывая у них атом водорода, в результате этого образуется свободный метил CH3·, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома :
Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;
CH4 + Br· → CH3· + HBr; – рост цепи реакции галогенирования;
CH3· + Br· → CH3Br; – обрыв цепи реакции галогенирования.
Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование метана проходит поэтапно – за один этап замещается не более одного атома водорода.
Галогенирование будет происходить и далее пока, не будут замещены все атомы водорода .
- 3. нитрование метана:
- 4. окисление (горение) метана:
При избытке кислорода:
Горит голубоватым пламенем.
При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (сажа в различном виде, в т.ч. в виде графена , фуллерена и пр.) либо их смесь.
- 5. сульфохлорирование метана:
- 6. сульфоокисление метана:
- 7. разложение метана:
CH4 → C + 2H2 (при t o > 1000 о С).
- 8. дегидрирование метана:
- 9. каталитическое окисление метана:
В реакциях каталитического окисления метана могут образовываться спирты, альдегиды, карбоновые кислоты.
2CH4 + O2 → 2CН3OH (при t o = 200 о С, kat); – образуется метанол;
CH4 + O2 → НCНO + H2O (при t o = 200 о С, kat); – образуется формальдегид;
2CH4 + 3O2 → 2НCOОН + H2O (при t o = 200 о С, kat); – образуется муравьиная кислота.
Получение метана в промышленности и в лаборатории. Химические реакции – уравнения получения метана:
Так как метан в большом количестве встречается в природе. Например, содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов , его, как правило, не получают искусственно . Его выделяют при очистке и сепарации из природного газа , ПНГ и нефти при перегонке. Кроме того, его получают из метаногидратов (гидратов природного газа), в процессе эксплуатации биогазовых установок и пр.
Метан в промышленных и лабораторных условиях получается в результате следующих химических реакций:
- 1. газификации твердого топлива:
C + 2H2 → CH4 + H2O (повышенное давление и t o , kat = Ni, Mo или без катализатора).
CО + 3H2 → CH4 (kat = Ni, t o = 200-300 о С);
- 3. реакции взаимодействия оксида углерода (IV) и водорода:
- 4. гидролиза карбида алюминия:
- 5. щелочного плавления солей одноосновных органических кислот
Применение и использование метана:
– как топливо для автомобилей, судов, газовых плит, печей, паяльных ламп, зажигалок и пр. бытовых приборов;
– как сырье в химической промышленности для проведения реакций органического синтеза.
Источник