Мембранный потенциал определение характеристика происхождение способы регистрации

6) Мембранный потенциал, его происхождение.

Потенциал покоя (мембранный потенциал) — наличие постоянной разности потенциалов между наружной и внутренней поверхности клеточной мембраны. Амплитуда потенциала покоя в среднем 60-90 мВ. Наружная поверхность мембраны в покое имеет положительный заряд, внутренняя — отрицательный.

В основе происхождения потенциала покоя лежит мембранно-ионная теория, согласно которой биоэлектрические потенциалы обусловлены: 1) ионной асимметрией (неодинаковая концентрация ионов К, Na, Cl, анионов внутри и вне клетки). Ионная асимметрия поддерживается: а) за счет свойств ионов (подвижность и конфигурация) б) за счет свойств мембраны (избирательная проницаемость ионов) в) Na-K-насос, который перемещаться ионы против концентрационного градиента 2) различной селективной (избирательной) проницаемостью поверхности мембраны. Мембрана: а) хорошо проницаема для ионов К+ б) плохо проницаема для ионов Na+ в) совсем не проницаема для анионов A- То есть, потенциал покоя возникает в связи с неравенством ионных концентраций по ту и другую сторону мембраны. В цитоплазме нервных и мышечных клеток по сравнению с внеклеточным пространством содержится: — ионов калия в 30-40 раз больше — ионов натрия в 8-10 раз меньше — ионов хлора в 30-50 раз меньше — в большом количестве содержатся органические анионы А (глютамат, аспартат, белки, АК) Высокая концентрация калия внутри и натрия снаружи обеспечивается КNaнасосом. По мере образования разности потенциалов на мембране диффузия ионов калия будет испытывать затруднения, обусловленное действием электростатических сил. Равенство сил диффузии и электростатического отталкивание, образующееся при этом: сколько ионов проходит через мембрану в одном направлении под воздействием диффузии, столько же их проходит обратно под воздействием отталкивания.

7) Современное представление о строении и функции мембран. Ионные каналы мембран, их классификация. Активный и пассивный транспорт веществ через мембрану.

Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Толщина мембраны 7.5′-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами. погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды. 15- 30% холестерина. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрана и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать

1. Обеспечивает целостность клетки, как структурной единицы ткани.

2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью,

3. Обеспечивает активный транспорт ионов и других веществ в клетку и из нее

4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических

Источник

15. Мембранный потенциал, механизмы его происхождения. Методы регистрации.

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1:0,04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис.

Читайте также:  Способ определения ускорения свободного падения

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых — 90-100 мВ, гладких мышц — 40-60 мВ, железистых клеток — 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрий-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрий-калиевый насос — это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза на 5-10 мВ увеличивает мембранный потенциал.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ:

1.Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий-натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкМ стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец (рис).

Читайте также:  Способ обшивки пластиковыми панелями

Источник

15. Мембранный потенциал, механизмы его происхождения. Методы регистрации.

В 1924 г. английский физиолог Донанн установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциала покоя или МП, близка к калиевому равновесному потенциалу. Это потенциал, образующийся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой установили в 1939 году Ходжкин и Хаксли. Они исследовали гигантское нервное волокно (аксон) кальмара и обнаружили, что внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора.

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет неспецифических каналов. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов.

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Этот механизм называется натрий-калиевым насосом. Натрий-калиевый насос — это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ:

1.Активный транспорт. Он осуществляется с помощью энергии АТФ.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии..

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкМ стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец (рис).

Источник

1.3 Мембранный потенциал покоя. Метод регистрации, механизмы происхождения и поддержания

Для исследования биоэлектрических явлений в клетках применяют микроэлектроды (стеклянные пипетки, наполненные электролитом, с очень тонким – 0,5 мкм – кончиком). В таком микроэлектроде электролит играет роль проводника тока, а стекло – изолятора. Когда кончик микроэлектрода находится в межклеточной жидкости, между ним и индифферентным электродом (находящимся там же) разность зарядов равна нулю. Если микроэлектрод ввести внутрь клетки, то регистрирующая установка мгновенно покажет некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости.

Читайте также:  Способ прикрепления листа акации

При выведении кончика микроэлектрода из клетки возвратным движением или прокалывание ее насквозь разность потенциалов между электродами скачкообразно исчезает. Разность зарядов между внутренней и наружной сторонами мембраны клетки называют мембранным потенциалом (МП). В покое эта величина варьирует от -9 до -100 мВ в зависимости от вида ткани и называется мембранным потенциалом покоя (МПП). Следовательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение – гиперполяризацией, восстановление исходного значения – реполяризацией мембраны.

МПП играет исключительно важную роль в жизнедеятельности самой клетки и организма в целом. В частности, он составляет основу возбуждения и переработки информации нервной клеткой, обеспечивает регуляцию деятельности внутренних органов и опорно-двигательного аппарата посредством запуска процессов возбуждения и сокращения в мышце. Нарушение процессов возбуждения в кардиомиоцитах ведет к остановке сердца.

Согласно мембранно-ионной теории (Бернштейн, Ходжкин, Хаксли, Катц) непосредственной причиной формирования МПП является неодинаковая концентрация анионов и катионов внутри и вне клетки.

Мембранная теория происхождения мпп

В состоянии покоя клеточная мембрана хорошо проницаема для ионов K + (в ряде клеток и для Cl — ), менее проницаема для ионов Na + и практически непроницаема для внутриклеточных белков и других органических ионов. Ионы K + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы белков остаются в цитоплазме, обеспечивая появление разности потенциалов (внутри клетки заряд «-» снаружи «+»).

Возникающая разность потенциалов препятствует выходу K + из клетки и при некотором ее значении наступает равновесие между выходом K + по концентрационному градиенту и входом этих катионов по возникшему электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, называется равновесным потенциалом. Его величина может быть рассчитана по уравнению Нернста.

где Ек + — равновесный потенциал для К + ; R – газовая постоянная; T – абсолютная температура; F – число Фарадея; [K + нар] и [K + внутр] – наружная и внутр. концентрации K + .

Наряду с потоками ионов К + , являющихся основными факторами мембранного потенциала, через мембрану нервной клетки в значительно меньшем количестве движутся ионы Na + , Cl — или Cа 2+ . Вклад каждого из равновесных потенциалов в величину МПП опрделяется проницаемостью клеточной мембраны для каждого из этих производится по уравнению Гольдмана.

где Em – мембранный потенциал, Р — проницаемость мембраны для соответствующих ионов. Ее часто выра­жают в относительных величинах, принимая Рк за единицу. Для мембраны аксона кальмара в покое отношение Рк: РNa: РCl = 1 : 0,04 : 0,45.

Перечисленные факторы составляют ионную компоненту МПП, которая зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая – «метаболическая» компонента обусловлена активностью Na/К-насоса, который представляет собой белковое образование в мембране клетки, выполняющее следующую работу: выкачивание из цитоплазмы с использованием энергии АТФ 3 ионов Na + в обмен на 2 иона К +, которые возвращаются в клетку. Таким образом, Na/К-насос оказывает двоякое влияние на МПП: поддерживает концентрационные градиенты между цитоплазмой и внешней средой и оказывает прямое влияние на МПП в силу своей электрогенности.

Источник

Оцените статью
Разные способы