Механические свойства металлов способы определения твердости

Механические свойства металлов и мето­ды определения некоторых из них

Механические свойства характеризуют спо­собность металлов и сплавов сопротивляться действию внешних сил — статических и динамических, растягива­ющих, сжимающих, изгибающих, скручивающих и сре­зающих, которые вызывают различные виды деформа­ции.

Основными механическими свойствами металлов являются прочность, твердость, ударная вязкость, уп­ругость, пластичность, хрупкость, выносливость, сопро­тивление кручению и др. Знание механических свойств металлов необходимо для выбора материала, обеспе­чивающего надежность и долговечность изделия, опре­деления оптимальной технологии изготовления изде­лия.

Прочностьюназывается способность металлов сопро­тивляться разрушающему воздействию внешних сил. В зависимости от направления действия сил различают прочность на растяжение, сжатие, изгиб и др. Предел прочности на растяжение, сжатие и изгиб характеризу­ется напряжением, соответствующим наибольшей ра­стягивающей и сжимающей силе, а также (наибольшему изгибающему моменту, которые выдерживает образец металла при разрушении. Предел текучести — свойство металла сопротивляться деформации. Чем выше проч­ность металла, тем меньше размеры изделия и расход металла на изделие.

Твердость характеризует свойство металла сопротив­ляться вдавливанию (проникновению) в него другого, более твердого тела. Металлы и сплавы, обладающие высокой твердостью, применяются для производства ре­жущего инструмента и различных деталей, подвержен­ных сильному износу.

Вязкость— свойство материала поглощать энергию внешних сил за счет пластической деформации. Удар­ная вязкость является важным механическим свойством металлов и сплавов и характеризует способность сопро­тивляться ударным динамическим нагрузкам.

Упругостью называется свойство металлов и сплавов восстанавливать свою форму и размеры после прекра­щения действия внешней силы. Упругость имеет важное значение для материалов, которые используются для изготовления пружин, рессор, мостовых ферм и других деталей и изделий.

Пластичность характеризует свойство металлов из­менять свою форму и размеры под действием внешних сил, не разрушаясь. Пластичность выражается относи­тельным удлинением и сужением, определяемыми при растяжении стандартных образцов.

Хрупкость — это свойство металлов и сплавов разру­шаться под действием внешних сил без остаточных деформаций.

Выносливостью называется свойство металла сопро­тивляться действию переменных по величине и направ­лению многократных нагрузок. Материалы, обладаю­щие ‘большой выносливостью, применяются для изготовления коленчатых валов и шатунов двигателей, де­талей паровых машин, частей вибраторов и другого оборудования.

Кручение характеризует сопротивление металлов действию крутящего момента.

Для сравнительной оценки механических свойств различных металлов введены специальные качествен­ные характеристики, разработаны методы их испытаний, определены формы и размеры испытуемых образцов и другие параметры испытаний.

Показатели механи­ческих свойств условно подразделяются на две группы, характеризующие свойства металла как материала и свойства готового металлического изделия.

Технологические свойства определяют спо­собность металлов и сплавов подвергаться различным видам обработки. Знание технологических свойств ме­таллов необходимо при изучении влияния различных методов изготовления изделий на их свойства. Основ­ными технологическими свойствами являются ковкость, свариваемость, прокаливаемость, жидкотекучесть, обра­батываемость резанием и др.

Ковкость— способность металлов и сплавов подвер­гаться различным видам обработки давлением (прокат­ке, волочению, прессованию, ковке и штамповке) без разрушения. Ковкость характеризуется пластичностью и сопротивлением деформации.

Свариваемость— способность металлов и сплавов образовывать прочные сварные соединения, обладающие теми же свойствами, что и свариваемые металлы. Хоро­шо свариваются малоуглеродистые и низколегированные стали, удовлетворительно — среднеуглеродистые и сред­нелегированные стали. Низкая свариваемость высоколе­гированных сталей и чугунов вызывает необходимость применения специальных сварочных материалов, пред­варительного подогрева, термообработки и т. д., что по­вышает себестоимость процесса, снижает качество свар­ных соединений.

Прокаливаемость характеризуется способностью ме­талла или сплава закаливаться на определенную глуби­ну. При низкой прокаливаемости прочность материала по сечению неодинаковая, что приводит к снижению срока эксплуатации деталей, машин и механизмов.

Жидкотекучестью называется способность металлов и сплавов в расплавленном состоянии хорошо запол­нять полость литейной формы и точно воспроизводить очертания отливки. Высокая жидкотекучесть материа­ла обеспечивает получение высококачественных и плот­ных отливок, снижение в них газовых и усадочных ра­ковин и т. п.

Обрабатываемость резанием определяется способ­ностью металлов и сплавов поддаваться обработке ре­жущим инструментом. При хорошей обрабатываемости металла резанием режущий инструмент легко и быстро снимает припуск на обработку, полученная деталь имеет необходимую точность и чистоту поверхности, тогда жак при плохой обрабатываемости резанием сни­жается стойкость инструмента, повышаются энергети­ческие и трудовые затраты.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Механические свойства металлов и методы их определения

Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.06.2012
Читайте также:  Любой удобный для вас способ

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ

Механические свойства определяют способность металлов сопротивляться воздействию внешних сил (нагрузок). Они зависят от химического состава металлов, их структуры, характера технологической обработки и других факторов. Зная механические свойства металлов, можно судить о поведении металла при обработке и в процессе работы машин и механизмов.

К основным механическим свойствам металлов относятся прочность, пластичность, твердость и ударная вязкость.

Прочность — способность металла не разрушаться под действием приложенных к нему внешних сил.

Пластичность — способность металла получать остаточное изменение формы и размеров без разрушения.

Твердость — способность металла сопротивляться вдавливанию в него другого, более твердого тела.

Ударная вязкость — степень сопротивления металла разрушению при ударной нагрузке.

Механические свойства определяют путем проведения механических испытаний.

1. Испытания на растяжение

Этими испытаниями определяют такие характеристики, как пределы пропорциональности, упругости, прочности и пластичность металлов. Для испытаний на растяжение применяют круглые и плоские образцы (рисунок 2.1, а, б), форма и размеры которых установлены стандартом. Цилиндрические образцы диаметром d0 = 10 мм, имеющие расчетную длину l0 = 10d0, называют нормальными, а образцы, у которых длина l0 = 5d0, — короткими. При испытании на растяжение образец растягивается под действием плавно возрастающей нагрузки и доводится до разрушения.

Разрывные машины снабжены специальным самопишущим прибором, который автоматически вычерчивает кривую деформации, называемую диаграммой растяжения. Диаграмма растяжения в координатах «нагрузка Р — удлинение ?l» отражает характерные участки и точки, позволяющие определить ряд свойств металлов и сплавов (рисунок 2.1). На участке 0 — Рпц удлинение образца увеличивается прямо пропорционально возрастанию нагрузки. При повышении нагрузки свыше Рпц, на участке Рпц — Pупр прямая пропорциональность нарушается, но деформация остается упругой (обратимой). На участке выше точки Pvпр возникают заметные остаточные деформации, и кривая растяжения значительно отклоняется от прямой. При нагрузке Рт появляется горизонтальный участок диаграммы — площадка текучести Т-Т 1 , которая наблюдается, главным образом, у деталей из низкоуглеродистой стали. На кривых растяжения хрупких металлов площадка текучести отсутствует. Выше точки Рт нагрузка возрастает до точки А, соответствующей максимальной нагрузке Рв, после которой начинается ее падение, связанное с образованием местного утонения образца (шейки). Затем нагрузка падает до точки В, где и происходит разрушение образца. С образованием шейки разрушаются только пластичные металлы.

а, б — стандартные образцы для испытания на растяжение;

в — диаграмма растяжения образца из пластичного материала

Рисунок 2.1 — Испытание на растяжение

Усилия, соответствующие основным точкам диаграммы растяжения, дают возможность определить характеристики прочности, выраженные в мегапаскалях, МПа, по формуле

где уi — напряжение, МПа;

Pi — соответствующая точка диаграммы растяжения, Н;

F0 — площадь поперечного сечения образца до испытания, мм 2 .

Предел пропорциональности упц — это наибольшее напряжение, до которого сохраняется прямая пропорциональность между напряжением и деформацией:

где Pпц — напряжение, соответствующее пределу пропорциональности, Н.

Предел упругости уупр — напряжение, при котором пластические деформации впервые достигают некоторой малой величины, характеризуемой определенным допуском (обычно 0,05 %):

где Pупр — напряжение, соответствующее пределу упругости, Н.

Предел текучести физический ут — напряжение, начиная с которого деформация образца происходит почти без дальнейшего увеличения нагрузки:

где Pт — напряжение, соответствующее пределу текучести, Н.

Если площадка текучести на диаграмме растяжения данного материала отсутствует, то определяется условный предел текучести у0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %.

Предел прочности (временное сопротивление) ув — напряжение, равное отношению наибольшей нагрузки, предшествующей разрушению образца, к первоначальной площади его сечения:

где Pв — напряжение, соответствующее пределу прочности, Н.

По результатам испытания на растяжение определяют характеристики пластичности металлов.

Показатели пластичности металлов — относительное удлинение и относительное сужение — рассчитывают по результатам замеров образца до и после испытания.

Относительное удлинение д находится как отношение увеличения длины образца после разрыва к его первоначальной расчетной длине, выраженное в процентах:

где lk — длина образца после разрыва, мм;

l0 — расчетная (начальная) длина образца, мм.

Относительное сужение ш определяется отношением уменьшения площади поперечного сечения образца после разрыва к первоначальной площади его поперечного сечения, выраженным в процентах:

где F0 — начальная площадь поперечного сечения образца;

Fк — площадь поперечного сечения образца в месте разрушения.

2. Методы определения твердости

Наиболее распространенным методом определения твердости металлических материалов является метод вдавливания, при котором в испытуемую поверхность под действием постоянной статической нагрузки вдавливается другое, более твердое тело (наконечник). На поверхности материала остается отпечаток, по величине которого судят о твердости материала. Показатель твердости характеризует сопротивление материала пластической деформации, как правило, большой, при местном контактном приложении нагрузки.

Твердость определяют на специальных приборах — твердомерах, которые отличаются друг от друга формой, размером и материалом вдавливаемого наконечника, величиной приложенной нагрузки и способом определения числа твердости. Так как для измерения твердости испытывают поверхностные слои металла, то для получения правильного результата поверхность металла не должна иметь наружных дефектов (трещин, крупных царапин и т. д.).

Читайте также:  Мексиканский способ пить текилу

Измерение твердости по Бринеллю. Сущность этого способа заключается в том, что в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 10, 5 или 2,5 мм в зависимости от толщины образца под действием нагрузки, которая выбирается в зависимости от предполагаемой твердости испытуемого материала и диаметра наконечника по формулам: Р = 30D 2 ; Р = 10D 2 ; Р = 2,5D 2 (таблица 2.1).

Таблица 2.1 — Выбор диаметра шарика D и нагрузки Р

Источник

Механические свойства металлов и сплавов: общий взгляд

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность — способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость — способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ () , а после закалки — 500 . . . 600 НВ.

Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им . Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Таблица.1. Механические свойства основных промышленных сплавов

Сталь малоуглеродистая (мягкая)

Котельное железо трубы, котлы

Сталь среднеуглеродистая (средней твердости)

Оси, шатуны, валы, рельсы

Сталь твердая после закалки и отпуска

Инструмент ударный и режущий

Детали, работающие на истирание и подверженные коррозии

Детали, изготовленные горячей штамповкой

Детали в авиастроении и автостроении

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Читайте также:  Основные способы глагольного действия

Механические свойства металлов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина , дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Как определить механические свойства?

Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:

— испытания на растяжение;

— метод вдавливания по Бринеллю;

— определение твердости металла по Роквеллу;

— оценка твердости по Виккерсу;

— определение вязкости с помощью маятникового копра;

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Источник

Оцените статью
Разные способы