Матричный способ решения линейных уравнений конспект

Конспект по математике на тему «Принципы решения матричных уравнений», 11 класс

РЕШЕНИЕ простейших матричных уравнений (Занятие №3) Гр.1542

Начнём с простого школьного уравнения, например уравнения . Оно состоит из математических знаков, чисел и неизвестной «икс». Перенесём «тройку» в правую часть и найдём решение уравнения:

Выполним проверку, для этого подставим найденное значение в исходное уравнение:

Получено верное равенство, значит, решение найдено правильно.

Про матричные уравнения рассказывать? =) Они устроены практически так же, только вместо чисел… правильно – матрицы (и конечно, числа тоже есть, помним, что матрицу можно умножить на число).

Общие принципы решения матричных уравнений

Типовое матричное уравнение состоит, как правило, из нескольких матриц и неизвестной матрицы , которую предстоит найти. То есть, решением матричного уравнения является матрица.

Решить матричное уравнение, выполнить проверку

Как решить матричное уравнение?

Фактически нужно использовать алгоритм решения детского уравнения с числами.

В правой части умножаем каждый элемент матрицы на три, а матрицу левой части переносим направо со сменой знака:

Причёсываем правую часть:

Выразим , для этого обе части уравнения умножим на :

Все числа матрицы делятся на 2, поэтому уместно избавиться от дроби. А заодно и от «минуса». Делим каждый элемент матрицы на –2:

Ответ :

Как выполнить проверку?

Подставим найденное значение в левую часть исходного уравнения и проведём упрощения:

Читайте также:  При полусухом способе изготовления керамических материалов влажность шихты составляет

Последним действием вынесли «тройку» из матрицы.

Получена правая часть исходного уравнения, значит решение найдено правильно.

Кстати, всегда ли матричное уравнение вообще имеет решение? Конечно не всегда. С ходу привожу простейшее доказательство: .

Пример, который мы разобрали, элементарен, и, скажу честно, вероятность столкнуться с чем-то подобным на практике невелика.

Раздать карточки с простейшими уравнениями, в каждой карточке по 2 уравнения

1. Задание на сложение двух матриц (2А+В), или (3А-В), или (2А-С), или (А+3С).

2. -2Х=3* или +2Х=2* или +Х=-2*

Рассказать про матричный метод решения-с применением обратной матрицы. (взять материал лекционный)

Решить матричное уравнение, выполнить проверку

Решение : Уравнение уже имеет вид , поэтому никаких предварительных действий проводить не нужно.

Для разрешения уравнения относительно умножим обе его части на слева:

Да-да, прямо так и пишем при оформлении решения. Хотя можно ограничиться единственной фразой: «Решение ищем в виде » – без всяких пояснений и вывода формулы .

Из условия известны матрицы , однако, обратной матрицы мы не знаем. Придётся её найти:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .

– матрица алгебраических дополнений.

– транспонированная матрица алгебраических дополнений.

Таким образом, обратная матрица:

На финише проводим матричное умножение и получаем решение:

Ответ :

Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения. Таким образом, решение найдено правильно.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Конспект на тему: «Решение системы линейных уравнений матричным методом»

Решение систем линейных уравнений матричным методом

Читайте также:  Способы отметить день рожденье

Пусть дана система уравнений

Рассмотрим матрицу, составленную из коэффициентов при неизвестных .

Свободные члены и неизвестные можно записать в виде матриц-столбцов:

Тогда используя правило умножения матриц, эту систему уравнений можно записать так:

Это равенство называется простейшим матричным уравнением .

Чтобы решить матричное уравнение, нужно:

Найти обратную матрицу .

Найти произведение обратной матрицы на матрицу – столбец свободных членов В, т.е..

Пользуясь определением равных матриц, записать ответ.

Решить систему уравнений

Представим уравнение в виде матричного уравнения.

Решение . Перепишем систему в виде АХ=В, где

Решение матричного уравнения имеет вид .

Найдем обратную матрицу :

Следовательно, х=2, y =3, z =-2.

Решить систему уравнений матричным методом

Найдем обратную матрицу А -1 .

 = det A = 20 – 12 – 3 + 8 – 45+2= -30.

Находим матрицу Х.

Итого решения системы: x =1; y = 2; z = 3

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 809 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 285 человек из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 601 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-1213245

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

В Осетии студенты проведут уроки вместо учителей старше 60 лет

Читайте также:  Способы помириться с другом

Время чтения: 1 минута

Российские школьники завоевали пять медалей на олимпиаде по физике

Время чтения: 1 минута

Российский совет олимпиад школьников намерен усилить требования к олимпиадам

Время чтения: 2 минуты

В проекте КоАП отказались от штрафов для школ

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Оцените статью
Разные способы