Математический способ решения задач это

Решение математических задач

Решить математическую задачу – это значит найти такую последовательность общих положений математики, применяя которые к условиям задачи получаем то, что требуется найти – ответ.

Основными методами решения текстовых задач являются арифметический и алгебраический метод, а так же комбинированный.

Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над данными в задаче числами. Одну и туже задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений в процессе решения задачи.

Решить задачу алгебраическим методом – значит найти ответ на требование задачи путем составления и решения уравнения или системы уравнений.

Текстовые задачи алгебраическим методом решают по следующей схеме:

1) выделяют величины, о которых идет речь в тексте задачи, и устанавливают зависимость между ними;

2) вводят переменные (обозначают буквами неизвестные величины);

3) с помощью введенных переменных и данных задачи составляют уравнение или систему уравнений;

4) решают полученное уравнение или систему;

5) проверяют найденные значения по условию задачи и записывают ответ.

Комбинированный метод решения включает как арифметический, так и алгебраический способы решения.

В начальной школе задачи делят по количеству действий при решении на простые и составные. Задачи, в которых для ответа на вопрос нужно выполнить только одно действие, называют простыми. Если для ответа на вопрос задачи нужно выполнить два и более действий, то такие задачи называют составными.

Составную задачу, тек же как и простую, можно решить, используя различные способы.

Задача. Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные – щуки. Сколько щук поймал рыбак?

Обозначим каждую рыбу кругом. Нарисуем 10 кругов и обозначим пойманных рыб.

Для ответа на вопрос задачи можно не выполнять арифметические действия, так как количество пойманных щук соответствует не обозначенным кругам – их три.

1) 3+4=7(р) – пойманные рыбы;

2) 10 – 7 = 3(р) – пойманные щуки.

Пусть х – пойманные щуки. Тогда количество всех рыб можно записать выражением: 3 + 4 + х. По условию задачи известно, что рыбак поймал всего 10 рыб. Значит: 3 + 4 + х = 10. Решив это уравнение, получим х = 3 и тем самым ответим на вопрос задачи.

Читайте также:  Как сделать свой колодец способы

лещи окуни щуки

Этот способ, так же как и практический, позволят ответить на вопрос задачи, не выполняя арифметических действий.

В математике общепринято следующее деление процесса решения задач:

1) анализ текста задачи, схематическая запись задачи, исследование задачи;

2) поиск способа решения задачи и составление плана решения;

3) осуществление найденного плана;

4) анализ найденного решения задачи, проверка.

Методы поиска решения задачи можно назвать следующие:

1) Анализ: а) когда в рассуждениях двигаются от искомых к данным задачи; б) когда целое расчленяют на части;

2) Синтез: а) когда двигаются от данных задачи к искомым;
б) когда элементы объединяют в целое;

3) Переформулировка задачи (четко формулировать промежуточные задания, возникающие по ходу поиска решения);

4) Индуктивный метод решения задачи: на основе точного чертежа усмотреть свойства фигуры, сделать выводы и доказать их;

5) Применение аналогии (вспомнить аналогичную задачу);

6) Прогнозирование – предвидение тех результатов, к которым может привести поиск.

Рассмотрим более подробно процесс решения задачи:

Задача на движение. Лодка прошла по течению реки расстояние между двумя пристанями за 6 ч, а обратно – за 8ч. За сколько времени пройдет расстояние между пристанями плот, пущенный по течению реки?

Анализ задачи. В задаче речь идет о двух объектах: лодка и плот. Лодка имеет собственную скорость, а плот и река, по которой плывут лодка и плот, имеет определенную скорость течения. Именно поэтому лодка совершает путь по течению реки за меньшее время (6ч), чем против течения (8ч). Но эти скорости в задаче не даны, так же как неизвестно и расстояние между пристанями. Однако требуется найти не эти неизвестные, а время, за которое плот проплывет это расстояние.

Лодка 6 ч

А В

плот лодка

Поиск способа решения задачи. Нужно найти время, за которое плот проплывет расстояние между пристанями А и В. Для того, чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они неизвестны, поэтому обозначим расстояние АВ буквой S (км),а скорость течения а км/ч.Чтобы связать эти неизвестные с данными задачи, нужно знать собственную скорость лодки. Она тоже неизвестна, положим, она равна V км/ч. Отсюда возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.

Читайте также:  Способы защиты прав акционеров это

Осуществление решения задачи. Пусть расстояние равно S (км), скорость течения реки а км/ч, собственная скорость лодки V км/ч, а искомое время движения плота равно х ч.

Тогда скорость лодки по течению реки равна (V+а) км/ч. За лодка, идя с этой скоростью, прошла расстояние в S (км). Следовательно, 6(V + а) = S (1). Против течения эта лодка идет со скоростью (V – а) км/ч и данный путь она проходит за 8 ч, поэтому 8(V – а) = S (2). Плот, плывя со скоростью течения реки а км/ч, проплыл расстояние S (км) за х ч, следовательно, ах = S (3).

Полученные уравнения образуют систему уравнений относительно неизвестных а, х, S, V. Так как требуется найти лишь х, то остальные неизвестные постараемся исключить.

Для этого из уравнений (1) и (2) найдем: V + а = , V – а = . Вычитая из первого уравнения второе, получим: 2а = . Отсюда а = . Подставим найденное выражение в уравнение (3): х = . Откуда х=48 .

Проверка решения. Мы нашли, что плот проплывет расстояние между пристанями за 48 ч. Следовательно, его скорость, равная скорости течения реки, равна . Скорость же лодки по течению реки равна км/ч, а против течения км/ч. Для того, чтобы убедиться в правильности решения, достаточно проверить, будут ли равны собственные скорости лодки, найденные двумя способами: + и
. Произведя вычисления, получим верное равенство: = . Значит, задача решена правильно.

Ответ: плот проплывет расстояние между пристанями за 48 часов.

Анализ решения. Мы свели решение этой задачи к решению системы трех уравнений с четырьмя неизвестными. Однако найти надо было одно неизвестное. Поэтому возникает мысль, что данное решение не самое удачное, хотя и простое. Можно предложить другое решение.

Зная, что лодка проплыла расстояние АВ по течению реки за 6ч, а против – за 8ч, найдем, что в 1ч лодка, идя по течению реки проходит часть этого расстояния, а против течения . Тогда разность между ними = есть удвоенная часть расстояния АВ, проплываемая плотом за 1ч. Значит. Плот за 1ч проплывет часть расстояния АВ, следовательно, все расстояние АВ он проплывет за 48 ч.

Читайте также:  Способы утепления канализационных труб

При таком решении нам не понадобилось составлять систему уравнений. Однако это решение сложнее приведенного выше (не всякий догадается найти разность скоростей лодки по течению и против течения реки).

Упражнения для самостоятельной работы

1. Турист, проплыв по течению реки на плоту 12 км, обратно возвратился на лодке, скорость которой в стоячей воде равна 5 км/ч, затратив на все путешествие 10 ч. Найдите скорость течения реки.

2. Одна мастерская должна сшить 810 костюмов, другая за этот же срок – 900 костюмов. Первая закончила выполнение заказов за 3 дня, а вторая за 6 дней до срока. Сколько костюмов в день шила каждая мастерская, если вторая шила в день на 4 костюма больше первой?

3. Два поезда выехали навстречу друг другу с двух станций, расстояние между которыми равно 400 км. Через 4 часа расстояние между ними сократилось до 40 км. Если бы один из поездов вышел на 1 час раньше другого, то их встреча произошла бы на середине пути. Определите скорости поездов.

4. На одном складе 500 т угля, а на другом – 600 т. Первый склад ежедневно отпускает 9 т, а второй – 11 т угля. Через сколько дней угля на складах станет поровну?

5. Вкладчик взял из сбербанка 25 % своих денег, а потом 64 000рублей. После чего осталось на счету 35 % всех денег. Какой был вклад?

6. Произведение двузначного числа и его суммы цифр равно 144. Найдите это число, если в нем вторая цифра больше первой на 2.

7. Решите следующие задачи арифметическим методом:

а) На путь по течению реки моторная лодка затратила 6 ч, а на обратный путь – 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?

в) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая в течении 5 дней?

Источник

Оцените статью
Разные способы