Машины постоянного тока классификация способы возбуждения

Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Классификация машин постоянного тока по способу возбуждения

Рабочие свойства машин постоянного тока зависят в значитель­ной мере от способа соединения обмотки возбуждения с якорем машины. По способу питания обмотки возбуждения машины посто­янного тока подразделяются: на машины с параллельным возбуж­дением (шунтовые), машины с последовательным возбуждением (сериесные) и машины со смешанным возбуждением (компаундные) (рис. 2.10). Машины с параллельным и смешанным возбужде­нием применяют в качестве, как генераторов, так и двигателей, с последовательным возбуждением — только в качестве двигателей.

В машинах с параллельным возбуждением обмотка возбужде­ния присоединяется параллельно обмотке якоря (рис. 2.10, а), в машинах с последовательным возбуждением — последовательно с обмоткой якоря (рис.2.10, б). В машинах со смешанным возбужде­нием обмотка возбуждения имеет две части: одну, соединенную параллельно, а другую — последовательно с обмоткой якоря (рис. 2.10, в). Обмотки возбуждения, присоединяемые параллельно, вы­полняют из проводов небольшого сечения; обмотки же, присое­диняемые последовательно, рассчитываемые на прохождение че-рез них полного тока генератора, выполняют из проводов большо­го сечения.

ЭДС, которую развивает любой генератор постоянного тока, прямо пропорциональна числу его оборотов и величине магнит­ного потока, создаваемого полюсами. Магнитный же поток зави­сит от тока в обмотке возбуждения. Регулирование ЭДС генератора постоянного тока может осуществляться изменением либо числа его оборотов, либо величины тока возбуждения:

Читайте также:  Что такое гарднерелла способ передачи

где р — число пар полюсов; N — число всех проводников обмот­ки; а — число параллельных ветвей; Ф — магнитный поток обмот­ки возбуждения (Вб); п — частота вращения якоря, мин» 1 .

2.7. Электродвигатели постоянного тока

Величина вращающегося момента двигателя постоянного тока (М) выражается следующим соотношением:

где к — постоянная двигателя, зависящая от его конструкции; Ф — магнитный поток, Вб; /я — сила тока якоря, А. Скорость двигателя подчиняется уравнению

где Rя — сопротивление обмотки якоря, Ом.

Двигатель параллельного возбуж­дения, схема включения которого приведена на (рис. 2.11), о, присое­диняется к сети так, чтобы обмот­ка возбуждения всегда находилась под полным напряжением сети. Поэтому магнитный поток двига­теля остается постоянным, не за­висящим от нагрузки, а сила тока в обмотке якоря возрастает про­порционально нагрузке. Из форму­лы (2.8) видно, что вращающий момент двигателя также возраста­ет пропорционально нагрузке. Ско­рость вращения уменьшается по формуле (2.9) незначительно.

Регулирование скорости враще­ния, как показывает формула (2.9),

постигается изменением напряжения, подводимого к двигателю; вве­дением сопротивления в цепь якоря или изменением магнитного по­тока. Введение сопротивления в цепь якоря вызывает уменьшение ско­рости двигателя; регулирование скорости происходит при постоян­ном моменте. Этот способ применяется для подъемников, лебедок, поршневых компрессоров, насосов и т. д. Однако он связан со значи­тельными потерями, обусловленными нагревом добавочного сопро­тивления, через которое протекает весь ток якоря. Наибольшее рас­пространение имеет регулирование частоты вращения двигателя из­менением магнитного потока. Это достигается реостатом, включен­ным в обмотку возбуждения. При уменьшении силы тока возбужде­ния уменьшается магнитный поток, а следовательно, увеличивается частота вращения двигателя. В этом случае регулирование происходит при постоянной мощности. Включение реостата в цепь обмотки воз­буждения не вызывает значительных потерь энергии благодаря не­большому значению силы тока возбуждения. В двигателе параллельно­го возбуждения обмотка возбуждения имеет большое сопротивление и, следовательно, сила тока в этой обмотке и в реостате невелика.

Электродвигатель с последовательным возбуждением включают в сеть по схеме, изображенной на рис. 2.11, б. Своими характеристи­ками двигатели последовательного возбуждения значительно от­личаются от двигателей параллельного возбуждения. Вследствие того, что через обмотку возбуждения двигателя, последовательно соединенную с обмоткой якоря, проходит весь его ток, одновре­менно с увеличением нагрузки двигателя резко возрастает величи­на магнитного потока его полюсов. Также резко падает число его оборотов, которое, как уже отмечалось, изменяется обратно про­порционально магнитному потоку. В связи с этим такие двигатели, uo-первых, развивают большой вращающийся момент при малых оборотах (в частности, при пуске в ход) и, во-вторых, обладают большой перегрузочной способностью. Вместе с тем, с уменьше­нием нагрузки на валу частота вращения двигателя быстро возра­стает и при малых нагрузках (меньше 1/4 нормальной), он приоб­ретает скорость, опасную для его целостности. Вхолостую, т. е. без нагрузки, сериесные электродвигатели вообще нельзя пускать — они идут, как принято говорить, на «разнос». Это является отри­цательным свойством сериесного электродвигателя.

По своим характеристикам эти электродвигатели больше всего подходят для привода подъемно-транспортных устройств. Их ши­роко применяют в электрической тяге (трамваи, троллейбусы, электрические железные дороги).

В строительной практике двигатели последовательного возбуж­дения применяют на некоторых типах мощных экскаваторов с питанием от двигатель-генераторов и на электрических погрузчи­ках с питанием от аккумуляторов.

Регулирование скорости двигателей последовательного возбуж­дения принципиально не отличается от двигателей с параллель­ным возбуждением, только значение силы тока в обмотке возбуж­дения или якоря изменяется не реостатом, а их шунтированием — отводом части тока от этих обмоток.

Для изменения направления вращения двигателей постоянного тока (реверсирование) необходимо изменить полярность магнитного поля или направление силы тока в обмотке якоря. Эту операцию выполняют переключением соответствующих обмоток — якоря или возбуждения.

Источник

Машины постоянного тока – все, что нужно знать об этих устройствах

Несмотря на то, что переменный ток активно применяется человеком в быту и на различных производствах, машины постоянного тока, несмотря на некоторую ограниченность, до сих пор активно применяются в различных сферах деятельности человека. Суть работы данных агрегатов одна – преобразование механической энергии в электрическую, и наоборот.

Сегодня мы расскажем вам много интересного про эти уже давно изобретенные агрегаты, которые до сих пор практически ни в чем не изменились.

Особенности двигателей постоянного тока

У двигателей постоянного тока есть одно неоспоримое преимущество перед аналогами, работающими на переменном токе. Эти агрегаты могут плавно и точно регулировать свою скорость вращения, у них высокое быстродействие, а также они обладают большими перегрузочными и пусковыми моментами.

Сегодня их используют в основном в следующих отраслях:

  • В металлорежущих станках, роботах, манипуляторах, грузоподъемных механизмах, прокатных станках (электроприводы подач и главного движения);
  • В тяговых приводах мощных транспортных средств, таких как: тягачи, троллейбусы, трамваи, электровозы;

  • В мощных снегоочистителях;
  • В качестве исполнительных элементов автоматизированных систем управления и прочее.

Как устроены машины, работающие на постоянном токе

Электрические машины постоянного тока являются обратимыми устройствами, то есть они при определенном подключении могут использоваться либо как двигатель, либо как генератор тока.

Читайте также:  Временная остановка наружного кровотечения механическим способом

На картинке выше показано классическое строение такой машины:

  1. Коллектор – металлический скользящий контакт, через который ротор коммутируется с внешними электрическими цепями;
  2. Щетки (обычно графитовые или медно-графитовые) – ответная часть скользящего контакта, которая постоянно трется о коллектор при вращении ротора;

  1. Ротор (якорь)- подвижная часть агрегата. При его вращении запускается процесс электромагнитной индукции.
  2. Главные полюса;
  3. Катушка обмотки возбуждения;

Совет! Пункты 4 и 5 являются частями статора – неподвижной электрической части машины, которая может выступать в роли мощного электромагнита (режим двигателя) или обмотки индуктирующей напряжение (генераторный режим).

  1. Станина – корпус агрегата;
  2. Боковая крышка, которая закрывает крыльчатку охлаждения и является держателем подшипников качения, на которых вращается ротор;
  3. Вентилятор – призван охлаждать машину во время ее работы.

Интересно знать! Никакой двигатель не может преобразовывать энергию без потерь – ее часть всегда уходит в тепло.

Помимо этого конструкция имеет центральный вал вращения, который почему-то на схеме не отмечен, и иногда лапы – петли, через которые агрегат можно закрепить к столу, например.

  • Итак, основными рабочими частями машин постоянного тока являются ротор, который тут чаще называют якорем, и статор. Данную часть конструкции называют внутренней электрической. Существует также и внешняя электрическая часть, с помощью которой осуществляется управление двигателем, а также подключаются внешние электрические сети.

Остальные элементы относятся к механической части.

  • Станина машины постоянного тока делается из прочного металла – обычно это конструкционная сталь.
  • К внутренней части станины крепятся главные и добавочные полюса статора. Сердечники главных полюсов набираются из стальных пластин. Для добавочных полюсов они идут в основном массивные.
  • Обмотка возбуждения находится на главных полюсах – их МДС формируют рабочий поток. Обмотки добавочных полюсов обеспечивают нормальную коммутацию.

  • Роторный магнитопровод шихтуется из специальной электромагнитной стали.

Сам якорь имеет следующее строение:

  • Якорь имеет сердечник. Который, как уже было сказано, набирается из стальных пластин толщиной 0,35-0,5 мм. Пластины изолированы друг от друга тонким слоем лака или оксидной пленки, чтобы потери от вихревых токов были минимальными.
  • Снаружи сердечник имеет пазы, показанные в увеличенном виде на схеме выше. В эти пазы укладывается обмотка якоря, сделанная из специальной медной обмоточной проволоки, покрытой слоем изолирующего лака.
  • Проволока может быть круглого или прямоугольного сечения.
  • Обмотка внутри паза надежно крепится при помощи бандажей или клиньев из стальной проволоки.
  • Лобовая обмотка, выступающая за торцы сердечника, якоря крепится только бандажами.
  • Вся обмотка разбита на отдельные, изолированные друг от друга секции. Каждая из них соединяется в определенной последовательности с медными пластинами коллектора, к которым, так мы помним, за счет пружин прижимаются щетки.

Интересно знать! Контакт коллектора и щеток устроен таким образом, чтобы концы одной обмотки никогда не могли коротко замкнуться.

  • Вообще коллектор довольно простая, но многофункциональная деталь таких машин, предназначенная для выпрямления тока.
  • Состоит он из коллекторных пластин, называемых также ламелями.
  • Пластины изолированы друг от друга и элементов крепления манжетами и специальными прокладками.
  • С торцов пластины стягивают нажимные фланцы.
  • Коллектор должен иметь строго цилиндрическую форму, поэтому тщательно обтачивается на специальном оборудовании – таким же образом они могут восстанавливаться после коротких замыканий.

Идем дальше – на очереди щеточный аппарат:

  • Состоит он из щеточной траверсы и щеткодержателей со щетками.
  • Щеткодержатель имеет обойму, в которой и находится сама щетка. Под щеткой находится пружина, которая выталкивает ее наружу и тем самым прижимает к коллекторным пластинам.
  • От щеток отходят сборные шины, которые соединяют их с контактами машины.

При вращении ротора, между щетками и коллектором возникает искрение. Если оно будет слишком сильным, то возможно даже образование дугового разряда, что приведет к короткому замыканию и выходу агрегата из строя. Чтобы этого не произошло, и применяются дополнительные полюса обмотки.

На корпусе машины располагаются клеммы для подключения внешних цепей, а также паспортные данные.

Классификация машин постоянного тока

Способы возбуждения машин постоянного тока и включения главных полюсов делят машины на разные типы.

Выделяют следующие варианты:

  • Агрегаты с независимым возбуждением – Электрическая цепь, которую формирует обмотка возбуждения, никак не связана с силовой цепью ротора. Этот вариант практически единственный для генераторов постоянного тока.
  • Машины с параллельным возбуждением – цепь якоря и обмотка возбуждения включаются параллельно.
  • Варианты с последовательным возбуждением – не сложно сообразить, что обмотки соединяются последовательно – метод применяется на практике очень редко.
  • Машины со смешанным возбуждением – агрегаты имеют две обмотки возбуждения, одна из которых подключена к цепи ротора последовательно, а другая – параллельно.

Принцип работы на примере двигателя постоянного тока

Давайте посмотрим, как работает двигатель постоянного тока с параллельным возбуждением.

  • Итак, к цепи обмотки возбуждения подается напряжение (U) – источник выдает постоянный ток.
  • Напряжение вызывает движение тока (Iв), который создает постоянную силу намагничивания (IвWв), которая в свою очередь приводит в состояние возбуждения магнитный поток (Ф), являющийся основным. Его направление зависит от направления тока в обмотке.
  • В это же время в якорной цепи проходит ток (Iя), создающий свое магнитное поле.
  • Прижимающиеся к коллектору щетки делят обмотку якоря на параллельные ветви.
  • Обмотка в якорь укладывается таким образом, чтобы ее проводники, находящиеся в состоянии активности, находились у противоположных поясов. При этом направление токов будет одинаковым, что и не удивительно.
  • В этот момент начинается взаимодействие электромагнитных сил, в результате которого электромагнитный момент начинает вращать якорь.
Читайте также:  Сибирская язва источники способы заражения

  • При вращении якоря проводники в его обмотке пересекают основной магнитный поток, в результате чего в них образуется ЭДС, согласно закону электромагнитной индукции. Направление ЭДС определяется правилом правой руки, знакомого нам еще со школьной скамьи: расположите правую руку так, чтобы в ладонь входили магнитные линии, тогда большой палец покажет, куда двигается проводник, а остальные 4 – направление ЭДС.
  • Известно, что наибольшее значение ЭДС получает тогда, когда активная обмотка проходит непосредственно возле магнитных полюсов. Дальше она убывает, а потом ток меняет свое направление, при условии, что цепь размыкаться не будет.
  • Если предположить, что обмотка якоря устроена таким образом, то работала бы такая машина крайне неэффективно. Именно поэтому в якорях машин постоянного тока реализован принцип смены активных секций обмотки, что происходит при вращении. В любой момент времени задействованы те секции, в которых значение ЭДС самое высокое.
  • ЭДС создает свое магнитное поле, называемое поперечным, так как оно перпендикулярно основному. При взаимодействии полей результирующий поток искажается.
  • Разность потоков устанавливает рабочие параметры машины.

Рабочие моменты

Давайте разберем некоторые характеристики и особенности машин постоянного тока.

Пуск и режим реверса

В момент, когда двигатель запускается, якорь имеет неподвижное положение, а значит, ЭДС в нем равна нулю. Из-за того, что сопротивление якорной обмотки очень маленькое, пусковой тока якоря намного превышает номинальный. Если представить себе такой пуск двигателя, то он однозначно бы вышел из строя.

  • Чтобы такого не происходило, пусковой ток в двигателях постоянного тока с параллельным возбуждением ограничивается за счет включенного в цепь пускового реостата.
  • Пуск при этом необходимо производить при номинальном значении магнитного потока, благодаря чему увеличивается пусковой момент и быстро растет ЭДС в обмотке якоря. В результате двигатель разгоняется быстрее, а время, когда проходит большой пусковой ток по обмотке сокращается.
  • Когда разгон двигателя завершается, реостат выводится из цепи – делается это либо плавно, либо ступенчато.
  • Для того чтобы остановить двигатель, достаточно отключить подачу питания к нему.
  • Для любого электрического двигателя доступен режим вращения в обратном направлении – реверс. Для этого нужно всего лишь изменить направление тока либо в обмотке якоря, либо в обмотке статора.

Интересно знать! Одновременное изменение направления токов ни к чему не приведет, двигатель продолжит вращаться в том же направлении.

Потери мощности и КПД

Любой двигатель или генератор постоянного тока работает с потерями мощности. Их делят на два типа: основные и добавочные.

  • К первым относят магнитные, электрические и механические.
  • Магнитные потери, происходящие в стали обозначают ΔРс. Происходят они из-за того, что во время вращения сердечник на якоре постоянно перемагничивается, поэтому возникают потери на гистерезис и вихревые токи.
  • Электрические потери (ΔРэл) происходят из-за активного сопротивления обмоток, а также сопротивления щеточного контакта, то есть данное значение представляется в виде суммы указанных потерь.
  • Механические (ΔРмех) включают потери на трение подшипников, трение щеток о коллектор, трение вращающегося якоря о воздух (и такое есть) и вентиляционные потери.
  • Все остальные потери называются добавочными и связаны они в основном с взаимодействием различных частей агрегата с магнитным полем.

Интересно знать! Потери мощности при работе в холостом режиме, то есть без нагрузки, крайне малы.

Для расчета каждого типа потерь применяются специальные формулы. Мы не будем так глубоко вдаваться в суть, а скажем лишь, что КПД машины постоянного тока определяется отношением отдаваемой мощности, к потребляемой. Выражают данное значение обычно в процентах.

Современные машины постоянного тока стали очень эффективными. КПД у них обычно варьируется в пределах 75-90%.

Рабочие характеристики

Рабочие характеристики представляют собой следующие зависимости:

  • Скорости вращения, потребляемого тока и мощности двигателя;
  • КПД от полезной мощности при условии, что напряжение питания неизменно.
  • Тока обмотки возбуждения и отсутствия добавочного сопротивления в цепи якоря.

Все эти параметры позволяют говорить о свойствах двигателей в режиме эксплуатации, а также находить оптимальные и экономичные режимы их работы.

Регулировка скорости вращения двигателя

Регулировать скорость вращения машины постоянного тока можно тремя способами: изменение напряжения сети, реостатное регулирование, изменение магнитного потока. Давайте обо всем по порядку.

  • Изменение напряжения осуществляется за счет устройств, которые могут, собственно, менять величину напряжения.
  • Реостатное регулирование, как мы уже упоминали по ходу статьи, нуждается во введении в цепь якоря дополнительных резисторов активного типа, то есть меняющих свои характеристики при определенных условиях.
  • Регулирование магнитного потока происходит за счет уменьшения тока возбуждения.

Конечно, мы назвали не все характеристики машин постоянного тока, а лишь основные, но для ознакомления с этими агрегатами этого вполне достаточно.

Видео в этой статье продемонстрирует, как работают данные устройства.

Источник

Оцените статью
Разные способы