- Электронная библиотека
- Влияние электромагнитных полей на здоровье человека и способы защиты от их вредного воздействия
- Экранирование магнитного поля: принципы и материалы. Относительная магнитная проницаемость материалов
- Методы
- Принципы
- Основные характеристики
- Конструкции экранов
- Сверхпроводящие экраны
- Материалы
- Рекомендации по выбору материала
- Фольгированные ленты
- Полимерные материалы
- Компенсационный метод
- Экранирование кабелей
- Виды кабелей
Электронная библиотека
При несоответствии требованиям норм (в зависимости от характера выполняемых работ и уровня напряженности магнитного поля) для защиты от воздействия магнитных полей применяют практически такие же мероприятия, способы и средства, как и при защите от воздействия электрических полей:
– защита временем и расстоянием;
– уменьшение параметров излучения непосредственно в самом источнике излучения;
– экранирование источника излучения;
– экранирование рабочего места;
– рациональное размещение установок в рабочем помещении;
– установление рациональных режимов эксплуатации установок и работы обслуживающего персонала;
– применение предупреждающей сигнализации;
– выделение зон излучения;
– применение средств индивидуальной защиты.
Кратко остановимся на характеристике некоторых способов защиты. Так, в качестве организационных мероприятий, позволяющих уменьшить неблагоприятное действие постоянного магнитного поля, можно считать выполнение следующих требований:
– ограничение непосредственного контакта рук персонала с намагниченными изделиями путем использования манипуляторов, щипцов, прокладок из немагнитных материалов;
– введение и выведение изделий из электромагнитов следует осуществлять при обесточенном электромагните либо с использованием указанных приспособлений;
– осуществление намагничивания изделий на последней стадии технологического процесса;
– хранение и перенос магнитных изделий в толстостенной таре из немагнитных материалов или приспособлениях и устройствах, замыкающих магнитный поток;
– использование на участках технических испытаний изделий автоматических устройств для измерения физических параметров магнитов и магнитных материалов.
При разработке и эксплуатации технологических установок постоянного тока, создающих постоянное магнитное поле в большом объеме рабочего пространства, необходимо обеспечивать дистанционное управление технологическим процессом. Пульты управления установками должны быть вынесены за пределы зоны, в которой уровни магнитного поля превышают ПДУ с учетом времени действия.
Участки производственной среды с уровнями МП, превышающими ПДУ, следует обозначить специальными предупреждающими знаками, выполненными в соответствии с ГОСТ Р 12.4.026-2001 «ССБТ. Цвета сигнальные и знаки безопасности», с поясняющей надписью: «Осторожно! Магнитные поля» [16].
Для предупреждения неблагоприятного действия постоянного магнитного поля (ПМП) на руки работающих в производстве изделий электронной техники требуется осуществление следующих мероприятий:
– увеличить габариты кожухов на магнитных установках, предотвращающих контакты рук работающих с ПМП;
– внедрить сквозные технологические кассеты на участках сборки, исключающие воздействие ПМП на руки работающих;
– внедрить специальные приспособления дистанционного принципа действия для захвата приборов в магнитном поле и манипуляций.
Технологические установки постоянного тока следует размещать на таком расстоянии друг от друга, чтобы персонал, занятый на одном рабочем месте, не попадал в зону действия ПМП от другого источника.
При организации рабочих мест (рабочих зон) следует осуществлять и такие организационные мероприятия по снижению воздействия ПМП на организм человека, как выбор рационального режима труда и отдыха, сокращение времени нахождения в условиях действия ПМП, определение маршрута движения в рабочей зоне, ограничивающего контакт с ПМП.
3.22. Экран в форме полого шара с радиусами R1 и R2
Заметим, что кроме защиты временем, расстоянием и указанных выше мероприятий, наиболее действенной технической мерой для защиты от магнитного поля является экранирование. Экранирование от постоянных магнитных полей осуществляется посредством того, что для защиты человека или какого-либо оборудования от влияния посторонних магнитных полей их окружают массивными замкнутыми оболочками из ферромагнитного материала. Такие оболочки и называют магнитными экранами. Поле внутри экрана оказывается ослабленным по сравнению с внешним полем.
Например, для экрана в форме полого шара с радиусами R1 и R2 (рис. 3.22) и с абсолютной магнитной проницаемостью стенок m, помещенного во внешнее однородное поле с индукцией В0, магнитная индукция В в полости экрана равна [45]:
Например, если R1 = 0.8R2 и m = 4000, то В = 0.023В0. Следовательно, напряженность поля внутри экрана составляет 2 % от напряженности внешнего поля.
В случае экрана, выполненного в форме цилиндра с радиусами R1 и R2, значение магнитной индукции в средней части экрана при больших значениях магнитной проницаемости стали, из которой изготовлен экран (m >> m0), можно определить с помощью следующего выражения:
Здесь d – толщина стенки экрана (d = R2 – R1).
Экранирующее действие экранов из ферромагнитного вещества определяется тем, что линии магнитной индукции внешнего поля, стремясь пройти по пути с наименьшим магнитным сопротивлением, сгущаются внутри стенок экрана, почти не проникая в его полость. Точно также можно защитить внешнее пространство от воздействия магнитного поля, если
источник поля окружить массивной замкнутой оболочкой из ферромагнитного материала Нередко применяют многоступенчатые экраны в виде нескольких полых ферромагнитных тел, расположенных одно внутри другого.
Принцип действия экранов, которые применяются для защиты от воздействия магнитных полей промышленной частоты, будет рассмотрен ниже. Здесь только отметим, что физически экранирующее действие таких экранов объясняется не только тем, что магнитное сопротивление стенок экрана много меньше магнитного сопротивление воздуха, но и возникновением вихревых токов в стенках экрана, которые создают свое магнитное поле, направленное навстречу внешнему полю, и тем самым ослабляют его. Поэтому в данном случае важна не только величина магнитной проницаемости материала, из которого изготовлен экран, но и его удельная проводимость.
Отметим, что экранирующие устройства, предназначенные для защиты от магнитных полей, являются также хорошими защитными средствами (при их заземлении) и от электрических полей. Однако те экранирующие устройства, которые предназначены для защиты от электрических полей и толщина стенок которых определяется в основном из соображений механической прочности, могут оказаться малоэффективными при защите от магнитных полей, особенно, если эти поля являются постоянными.
Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00
Источник
Влияние электромагнитных полей на здоровье человека и способы защиты от их вредного воздействия
Природа подарила человечеству чистый, прозрачный воздух, водоемы и естественный электромагнитный фон, излучаемый как планетой и окружающим космосом, так и животным и растительным миром. Однако, с развитием цивилизации, естественный геомагнитный фон усилился техногенным воздействием. Человек при помощи радиотехнических и радиоэлектронных приборов создал невидимую электромагнитную паутину, в которой мы все находимся. Мощные линии электропередачи высокого и сверхвысокого напряжения, многочисленные радио- и телепередающие станции, космические станции спутниковой связи вызывают электромагнитное загрязнение среды обитания человека. Воздействие ЭМП происходит дома, на работе и даже во время отдыха на природе. Электробытовые приборы, предназначенные облегчить нашу жизнь, стены домов и квартир, пронизанные электрическими проводами, распространяют ЭМП не безвредные для здоровья человека.
Биологическое действие ЭМП.Данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. ЭМП высокой частоты приводят к нагреву тканей организма.
Многочисленные исследования в области биологического действия ЭМП определили наиболее чувствительные системы организма: нервную, иммунную, эндокринную, половую. Биологический эффект ЭМП в условиях многолетнего воздействия накапливается, вследствие чего возможно развитие отдаленных последствий дегенеративных процессов в центральной нервной системе, новообразований, гормональных заболеваний. К электромагнитным полям особенно чувствительны дети, беременные, люди с нарушениями в сердечно-сосудистой, гормональной, нервной, иммунной системах.
Влияние на нервную систему.Нарушается передача нервных импульсов. В результате появляются вегетативные дисфункции(неврастенический и астенический синдром), жалобы на слабость, раздражительность, быструю утомляемость, нарушение сна нарушается высшая нервная деятельность — ослабление памяти, склонность к развитию стрессовых реакций.
Влияние на сердечно-сосудистую систему.Нарушения деятельности этой системы проявляются, как правило, лабильностью пульса и артериального давления, склонностью к гипотонии, болями в области сердца. В крови отмечается умеренным снижением количества лейкоцитов и эритроцитов.
Влияние на иммунную и эндокринную системы.Установлено, что при воздействии ЭМП нарушается иммуногенез, чаще в сторону угнетения. У животных организмов, облученных ЭМП, отягощается течение инфекционного процесса. Влияние электромагнитных полей высокой интенсивности проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. Под действием ЭМП увеличивается выработка адреналина, активизируется свертываемость крови, снижается активность гипофиза.
Влияние на половую систему. Многие ученые относят электромагнитные поля к тератогенным факторам. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша. Наличие контакта женщины с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск врожденных уродств.
Основные источники ЭМП и способы защиты от их воздействия.
Источниками электромагнитных полей являются атмосферное электричество, геомагнитные поля, промышленные установки, радиолокация, радионавигация, средства теле- и радиовещания, бытовые приборы, внутренние электрические сети в домах. Излучаемое ими поле разнится в зависимости от конкретных моделей — чем выше мощность прибора, тем больше создаваемое им магнитное поле.
Достаточно актуальным является вопрос биологической безопасности сотовой связи. Однозначного ответа на него ученые до сих пор не дали. Можно отметить лишь одно: за все время существования сотовой связи ни один человек не получил явного ущерба здоровью из-за ее использования. Исходя из технологических требований построения системы сотовой связи, основная энергия излучения (более 90%) сосредоточена в довольно узком луче, который всегда направлен в сторону и выше прилегающих построек. В режиме разговора излучение сотового телефона гораздо выше, чем в режиме ожидания. Поле, возникающее вокруг его антенны, усиливается в метро, во время разговора в автомобиле, усиливает его действие металлическая оправа очков.
Персональные компьютеры давно превратились в одну из самых важных вещей в доме среднестатистического жителя любой из развитых стран мира. Очень часто приходится пользоваться компьютером по месту работы. По статистике, около 30% населения большую часть рабочего времени проводят за компьютером, кроме того, значительная часть пользователей имеет контакт с ПК дома. В связи с этим у многих возникает вопрос о вредных факторах, влияющих на человека при работе на компьютере и способах защиты от них. Считается, что наиболее опасно излучение монитора, являющегося источником электромагнитного, рентгеновского, инфракрасного, ультрафиолетового излучений. Однако, опасными в этом плане могут оказаться только довольно старые, выпущенные 5-7 лет назад мониторы. Они являются источниками ЭМИ сверхнизкой частоты, но не больше, чем другие электроприборы. Уровень рентгеновского излучения монитора намного меньше, чем естественный радиационный фон. А уровни инфракрасного и ультрафиолетового излучений монитора ничтожны по сравнению с электрическими лампами. Но даже в этом случае можно отдельно приобрести защитный экран. Современные жидкокристаллические (плоские) экраны и переносные компьютеры-ноутбуки вообще не излучают — у них другой принцип действия.
Для исключения или уменьшения уровней воздействия ЭМП на организм человека важно выполнять ряд простых рекомендаций:
— исключение длительного пребывания в местах с повышенным уровнем магнитного поля промышленной частоты
— грамотное расположение мебели для отдыха, обеспечивающие расстояние 2-3 метра до электрораспределительных щитов, силовых кабелей, электроприборов
— при приобретении бытовой техники обращайте внимание на информацию о соответствии прибора требованиям санитарных норм
— использование приборов меньшей мощности
— не пользоваться сотовым телефоном без необходимости, не разговаривать непрерывно более 3-4 минут
— использовать в автомобиле комплект hands-free, размещая его антенну в геометрическом центре крыши.
Люди уже не могут отказаться от электростанций, железных дорог, самолетов, автомобилей, от других завоеваний цивилизации, даже если идет речь о собственном здоровье. Задача состоит в том, чтобы минимизировать вредные техногенные воздействия на окружающую среду и ознакомить общество с конкретной экологической опасностью и выработать механизм защиты.
Источник
Экранирование магнитного поля: принципы и материалы. Относительная магнитная проницаемость материалов
Электромагнитные экраны находят широкое применение в промышленности. Они служат для устранения вредного влияния одних элементов электрического устройства на другие, для защиты персонала и оборудования от воздействия внешних полей, которые возникают при работе других устройств. «Гашение» внешнего магнитного поля необходимо при создании лабораторий, предназначенных для наладки и испытаний высокочувствительной техники. Оно также требуется в медицине и тех областях науки, где проводится измерение полей со сверхмалой индукцией; для защиты информации при ее передаче по кабелям.
Методы
Экранирование магнитного поля – это совокупность способов снижения напряженности постоянного или переменного поля в определенной области пространства. Магнитное поле, в отличие от электрического, полностью ослабить нельзя.
В промышленности наибольшее воздействие на окружающую среду оказывают поля рассеяния, возникающие при работе трансформаторов, постоянных магнитов, сильноточных установок и цепей. Они могут полностью нарушать нормальную работу соседних приборов.
Чаще всего используется 2 метода защиты:
- Применение экранов, изготовленных из сверхпроводящих или ферромагнитных материалов. Это эффективно при наличии постоянного или низкочастотного магнитного поля.
- Компенсационный способ (гашение вихревыми токами). Вихревые токи – это объемные электрические токи, которые возникают в проводнике при изменении магнитного потока. Данный способ показывает наилучшие результаты для высокочастотных полей.
Принципы
Принципы экранирования магнитного поля основаны на закономерностях распространения магнитного поля в пространстве. Соответственно для каждой из перечисленных выше методик они заключаются в следующем:
- Если поместить катушку индуктивности в кожух, сделанный из ферромагнетика, то линии индукции внешнего магнитного поля пройдут по стенкам защитного экрана, так как он имеет меньшее магнитное сопротивление по сравнению с пространством внутри него. Те силовые линии, которые наводятся самой катушкой, также почти все замкнутся на стенки кожуха. Для наилучшей защиты в этом случае необходимо выбирать ферромагнитные материалы, которые обладают высокой магнитной проницаемостью. На практике чаще всего используют сплавы железа. Для того чтобы повысить надежность экрана, его изготавливают толстостенным или сборным из нескольких кожухов. Недостатками такой конструкции является ее тяжеловесность, громоздкость и ухудшение экранирования при наличии швов и разрезов в стенках кожуха.
Основные характеристики
Для описания процесса экранирования применяются 3 основные характеристики:
- Эквивалентная глубина проникновения магнитного поля. Итак, продолжим. Этот показатель используется для экранирующего эффекта вихревых токов. Чем меньше его значение, тем выше ток, протекающий в поверхностных слоях защитного кожуха. Соответственно, тем больше наводимое им магнитное поле, которое вытесняет внешнее. Эквивалентная глубина определяется по формуле, указанной ниже. В этой формуле ρ и μr – удельное сопротивление и относительная магнитная проницаемость материала экрана соответственно (единицы измерения первой величины – Ом∙м); f – частота поля, измеряемая в МГц.
Конструкции экранов
Защитные кожухи для экранирования магнитного поля могут быть сделаны в различных конструктивных исполнениях:
- листовые и массивные;
- в виде полых трубок и кожухов с цилиндрическим или прямоугольным сечением;
- однослойные и многослойные, с воздушной прослойкой.
Так как расчет числа слоев довольно сложен, то эту величину чаще всего выбирают по справочникам, по кривым эффективности экранирования, которые были получены экспериментальным путем. Разрезы и швы в коробах допускается выполнять только вдоль линий вихревых токов. В противном случае уменьшается экранирующий эффект.
На практике получить высокий коэффициент экранирования сложно, так как всегда необходимо делать отверстия для кабельного ввода, вентиляции и обслуживания установок. Для катушек бесшовные кожухи изготавливают методом листового выдавливания, а в качестве съемной крышки служит дно цилиндрического экрана.
Кроме этого, при контакте элементов конструкции из-за неровностей поверхности образуются щели. Для того чтобы их ликвидировать, применяют механические прижимы или прокладки из проводящих материалов. Они выпускаются разных размеров и с различными свойствами.
Вихревые токи – это токи которые значительно меньше циркулирующих, но они способны препятствовать проникновению магнитного поля через экран. При наличии большого числа отверстий в кожухе снижение коэффициента экранирования происходит по логарифмической зависимости. Его наименьшее значение наблюдается при технологических отверстиях большого размера. Поэтому рекомендуется проектировать несколько мелких отверстий, чем одно крупное. Если необходимо применять стандартизованные отверстия (для ввода кабелей и других нужд), то используют запредельные волноводы.
В магнитостатическом поле, создаваемом постоянными электрическими токами, работа экрана заключается в шунтировании силовых линий поля. Защитный элемент устанавливается на максимально близком расстоянии к источнику. Заземление при этом не требуется. Эффективность экранирования зависит от магнитной проницаемости и толщины материала экрана. В качестве последних применяют стали, пермаллой и магнитные сплавы с высокой магнитной проницаемостью.
Экранирование кабельных трасс в основном выполняют двумя методами – использованием кабелей с экранированной или защищенной витой парой и укладкой кабелепроводов в алюминиевых коробах (или вставках).
Сверхпроводящие экраны
Работа сверхпроводящих магнитных экранов основана на эффекте Мейснера. Это явление заключается в том, что тело, находящееся в магнитном поле, переходит в сверхпроводящее состояние. При этом магнитная проницаемость кожуха становится равной нулю, то есть он не пропускает магнитное поле. Оно полностью компенсируется в объеме данного тела.
Достоинством таких элементов является то, что они гораздо эффективнее, защита от внешнего магнитного поля не зависит от частоты, а компенсационный эффект может длиться сколь угодно долго. Однако на практике эффект Мейснера не бывает полным, поскольку в реальных экранах, выполненных из сверхпроводящих материалов, всегда присутствуют структурные неоднородности, которые приводят к захвату магнитного потока. Данный эффект является серьезной проблемой для создания кожухов с целью экранирования магнитного поля. Коэффициент ослабления магнитного поля тем больше, чем выше химическая чистота материала. В экспериментах наилучшие показатели отмечены у свинца.
Другими недостатками сверхпроводниковых материалов для экранирования магнитного поля являются:
- высокая стоимость;
- присутствие остаточного магнитного поля;
- возникновение состояния сверхпроводимости только при низких температурах;
- неспособность выполнять свои функции в магнитных полях с высокой напряженностью.
Материалы
Чаще всего для защиты от магнитного поля применяют экраны из углеродистой стали, так как они обладают высокой технологичностью в отношении сварки, пайки, недороги и характеризуются хорошей коррозионной стойкостью. Кроме них, используются такие материалы, как:
- техническая алюминиевая фольга;
- магнитомягкий сплав из железа, алюминия и кремния (альсифер);
- медь;
- стекла с токопроводящим покрытием;
- цинк;
- трансформаторная сталь;
- токопроводящие эмали и лаки;
- латунь;
- металлизированные ткани.
Конструктивно они могут изготавливаются в виде листов, сеток и фольги. Листовые материалы обеспечивают лучшую защиту, а сетчатые более удобны в сборке – их можно соединять между собой точечной сваркой с шагом 10-15 мм. Для обеспечения антикоррозионной стойкости сетки покрывают лаками.
Рекомендации по выбору материала
При выборе материала для защитных экранов руководствуются следующими рекомендациями:
- В слабых полях используют сплавы с высокой магнитной проницаемостью. Наиболее технологичным является пермаллой, который хорошо поддается обработке давлением и резанием. Напряженность магнитного поля, необходимая для полного его размагничивания, а также удельное электрическое сопротивление зависят в основном от процентного содержания никеля. По количеству этого элемента выделяют низконикелевые (до 50%) и высоконикелевые (до 80%) пермаллои.
- Для уменьшения энергетических потерь в переменное магнитное поле помещают кожухи или из хорошего проводника, или из изолятора.
- Для частоты поля более 10 МГц хороший эффект дают покрытия из серебряной или медной пленки толщиной от 0,1 мм (экраны из фольгированного гетинакса и других изоляционных материалов), а также медь, алюминий, латунь. Для защиты меди от окисления ее покрывают серебром.
- Толщина материала зависит от частоты f. Чем ниже f, тем большая должна быть толщина для достижения того же эффекта экранирования. На высоких частотах для изготовления кожухов из любого материала достаточно толщины 0,5-1,5 мм.
- Для полей с высокой f ферромагнетики не используют, так как они обладают большим сопротивлением и приводят к большим потерям энергии. С целью экранирования постоянных магнитных полей нельзя также применять материалы с высокой проводимостью, кроме стали.
- Для защиты в широком диапазоне f оптимальным решением являются многослойные материалы (листы стали со слоем металла с высокой проводимостью).
Общими правилами выбора являются следующие:
- Высокие частоты – материалы с высокой проводимостью.
- Низкие частоты – материалы с высокой магнитной проницаемостью. Экранирование в данном случае является одной из наиболее сложных задач, так как это утяжеляет и усложняет конструкцию защитного экрана.
Фольгированные ленты
Фольгированные экранирующие ленты применяются в следующих целях:
- Экранирование широкополосных электромагнитных помех. Чаще всего их используют для дверей и стенок электрических шкафов с приборами, а также для формирования экрана вокруг отдельных элементов (соленоиды, реле) и кабелей.
- Отвод статического заряда, который накапливается на приборах, содержащих полупроводники и электронно-лучевые трубки, а также в устройствах, служащих для ввода-вывода информации из компьютера.
- В качестве компонента цепей заземления.
- Для уменьшения электростатического взаимодействия между обмотками трансформаторов.
Конструктивно они выполняются на основе проводящего адгезивного материала (акриловая смола) и фольги (с рифленой или гладкой поверхностью), сделанной из следующих видов металла:
- алюминий;
- медь;
- луженая медь (для пайки и лучшей антикоррозионной защиты).
Полимерные материалы
В тех устройствах, где наряду с экранированием магнитного поля требуется защита от механических повреждений и амортизация, применяются полимерные материалы. Они изготавливаются в виде прокладок из полиуретановой пены, покрытой полиэфирной пленкой, на основе акрилового адгезива.
При производстве жидкокристаллических мониторов используются акриловые уплотнители из токопроводящей ткани. В слое акрилового адгезива находится трехмерная электропроводная матрица, выполненная из токопроводящих частиц. Благодаря своей упругости такой материал также эффективно поглощает механические воздействия.
Компенсационный метод
Принцип компенсационного метода экранирования заключается в искусственном создании магнитного поля, которое направлено противоположно внешнему полю. Обычно это достигается с помощью системы катушек Гельмгольца. Она представляет собой 2 одинаковые тонкие катушки, располагающиеся соосно на расстоянии их радиуса. По ним пропускают электрический ток. Наведенное катушками магнитное поле отличается высокой однородностью.
Экранирование может также производиться с помощью плазмы. Этот явление учитывается при распределении магнитного поля в космосе.
Экранирование кабелей
Защита от магнитного поля необходима при прокладке кабелей. Электрические токи, наводящиеся в них, могут быть вызваны включением бытовой техники в помещении (кондиционеры, люминесцентные светильники, телефоны), а также лифтов в шахтах. Особенно большое влияние эти факторы оказывают на цифровые системы связи, работающие по протоколам с широкой полосой частот. Это связано с малой разницей между мощностью полезного сигнала и помехами в верхней зоне спектра. Кроме этого, электромагнитная энергия, которую излучают кабельные системы, неблагоприятно воздействует на здоровье персонала, работающего в помещении.
Между парами проводов возникают перекрестные наводки, обусловленные присутствием емкостной и индуктивной связи между ними. Электромагнитная энергия кабелей также отражается из-за неоднородностей их волнового сопротивления и ослабляется в виде тепловых потерь. В результате затухания мощность сигнала в конце протяженных линий падает в сотни раз.
В настоящее время в электротехнической промышленности практикуется 3 метода экранирования кабельных трасс:
- Применение цельнометаллических коробов (из стали или алюминия) или установка металлических вставок в пластиковые. При росте частоты поля экранирующая способность алюминия снижается. Недостатком также является дороговизна коробов. Для длинных кабельных трасс существует проблема обеспечения электрического контакта отдельных элементов и их заземления для обеспечения нулевого потенциала короба.
- Использование экранированных кабелей. Этот метод обеспечивает максимальную защиту, так как оболочка окружает непосредственно сам кабель.
- Вакуумное напыление металла на ПВХ-канал. Такой способ малоэффективен на частотах до 200 МГц. «Гашение» магнитного поля меньше в десятки раз по сравнению с укладкой кабеля в металлические короба из-за высокого удельного сопротивления.
Виды кабелей
Различают 2 вида экранированных кабелей:
- С общим экраном. Он располагается вокруг незащищенных скрученных проводников. Недостатком таких кабелей является то, что возникают большие межкабельные наводки (в 5-10 раз больше, чем у экранированных пар), особенно между парами с одинаковым шагом скрутки.
- Кабеля с экранированными витыми парами. Производится индивидуальное экранирование всех пар. Из-за более высокой стоимости они чаще всего применяются в сетях с жесткими требованиями по безопасности и в помещениях со сложной электромагнитной обстановкой. Использование таких кабелей при параллельной прокладке дает возможность уменьшить расстояние между ними. Это позволяет уменьшить затраты по сравнению с раздельным маршрутизированием.
Витая пара экранированного кабеля представляет собой изолированные пары проводников (их количество обычно составляет от 2 до 8). При такой конструкции уменьшаются перекрестные наводки между проводниками. У неэкранированных пар нет требований к заземлению, они обладают большей гибкостью, меньшими поперечными размерами, легкостью монтажа. Экранированная пара обеспечивает защиту от электромагнитных помех и высокое качество передачи данных по сетям.
В информационных системах также используется двухслойное экранирование, которое состоит из защиты витых пар в виде металлизированной пластиковой ленты или фольги, и общей металлической оплетки. Для эффективной защиты от магнитного поля такие кабельные системы должны иметь надежное заземление.
Источник