Логические операции способы задания логических операций

Информатика

Обложка урока взята с источника.

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Универсальный подход помогает решать разнотипные задачи, даже не вникая в условие детально. Именно для этого нужны логические задачи и универсальные способы решения. Существует множество подходов, но наиболее распространены 3 основных:

  • Способ рассуждений.
  • Табличный способ.
  • Решение при помощи средств логики.

Первый позволяет находить правильный ответ, обдумывая каждый пункт задачи, делая выводы из каждого условия. Этим методом мы пользуемся постоянно, в обычной жизни, решая простые бытовые примеры. Он простой, но для сложных задач не подходит.

Табличный метод сокращает форму записи примера и позволяет перебрать все возможные значения исходных данных, анализируя результат, полученный при каждой комбинации. Это очень наглядно, компактно и позволяет использовать обычные слова или же логические обозначения.

Поиск правильного решения средствами логики выводит решение примеров на новый уровень, позволяя абстрагироваться от лишней информации, выделяя только переменные, их взаимосвязи. Это позволяет решать задачи из любой сферы, не вникая в те данные, которые не важны для самого решения. Логическая основа задачи – своеобразный «скелет», а вся сопутствующая информация – «одежда».

Алгебра логики и решение задач

Несмотря на то, что логика, как наука о размышлении, существовала еще 5 в. До н.э., теперь это важная часть многих наук, а не только философии и риторики. Также логика существует, как отдельная наука уже более 200 лет.

Инструменты алгебры логики позволяют переводить словесные высказывания в сухие, объективные выражения, а с их помощью выполнять различные логические операции.Появился этот раздел математики 200 лет назад.

Стоит остановиться на базовых понятиях алгебры логики:

Логическая переменная – обозначение логического выражения, которое может быть true (t, правда, истина, да, 1) – false (f, ложь, нет, 0).

Формула– символьный способ выражения операции между переменными при помощи специальных знаков и скобок ().

Логическое высказывание – утверждение, в котором говорится только правда или только ложь.

Образец таких предложений: «Луна – вертится вокруг Марса» – ложно, а «После зимы всегда приходит весна» – истинно.

Частицы «не», «или», если», «и» и другие, которые являются связующими элементами в обычной речи, позволяют создавать элементарные логические выражения.

Элементарные высказывания – те, к которым нельзя применить понятие истинности или ложности. Их обозначают различными символами (латинские буквы, цифры), знаками. Ими занимаются те сферы, к которым они относятся. Они входят в состав высказываний логики.

Из одних высказываний можно образовывать другие, в результате получая составные высказывания. И от того, являются исходные элементы составного конечного высказывания правдивыми или неправдивыми, а также какие логические связки использовались, будет правдой или ложью все высказывание в целом.

Чтобы образовать такое составное предложение в обычной жизни, используют связки И, ИЛИ, НЕ. А научный подход заменил их на конъюнкцию, дизъюнкцию, инверсию и более сложные операции. Все эти процессы выражают словесно, таблично (таблицы истинности) или графически (диаграммы Эйлера-Венна).

Простые выражения содержат лишь одно выражение (правдивое или нет), и не содержит никаких логических операций.

Сложные могут содержать от 2 и больше аргументов (простых выражений), которые между собой связаны логическими операциями.

Еще используют понятие «предикат» – содержит любое количество переменных без перечисления всех составляющих данных. Это предикат простых, отрицательных P(x)=(x N , где N – число множеств. Так как значение двойки в степени растет очень быстро (4,8,16), обычно диаграммы используют для 2-3 множеств. Далее области пересечения будут сливаться, образуя неразличимые участки. Если множеств 2-3, то рисуют круги, если больше 4 – эллипсы. Этот «цветок» помещают в прямоугольную конструкцию, которую называют универсум U (универсальное множество).

Читайте также:  Числовая последовательность способы словесный

Диаграммы позволяют наглядно увидеть результат большинства логических функций:

Конъюнкция множеств А и В:

Сложное выражение (Ā)∨(A∧B), составленное из элементарных Ā, A∧B и их комбинации, графическое выражение:

Источник

Логические операции способы задания логических операций

Тема 3. Основы математической логики 1. Логические выражения и логические операции.
2. Построение таблиц истинности и логических функций.
3. Законы логики и преобразование логических выражений.
Лабораторная работа № 3. Основы математической логики.

1. Логические выражения и логические операции

Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики). Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.

Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

Примеры высказываний:

  1. Москва – столица России.
  2. Число 27 является простым.
  3. Волга впадает в Каспийское море.

Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

Следующие предложения высказываниями не являются:

  • Давай пойдем гулять.
  • 2*x>8.
  • a*x2+b*x+c=0.
  • Который час?

Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.

С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

Примеры высказываний:

  1. Сегодня светит солнце.
  2. Трава растет.

Каждое из этих высказываний характеризует свойства или состояние конкретного объекта (в пермом предложении — погоды, во втором — окружающего мира). Каждое из этих высказываний несет значение «истина» или «ложь».

В математической логике не рассматривается конкретное содержание высказывания, важно только, истинно оно или ложно. Поэтому высказывание можно представить некоторой переменной величиной, значением которой может быть только 0 или 1. Если высказывание истинно, то его значение равно 1, если ложно0.

Простые высказывания назвали логическими переменными, а сложныелогическими функциями. Значения логической функции также только 0 или 1. Для простоты записи высказывания обозначаются латинскими буквами А, В, С.

Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.

В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита.

Существуют разные варианты обозначения истинности и ложности логических переменных:

Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическое выражение — это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Читайте также:  Профилированная мембрана planter standard технология укладки способ монтажа

Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.

Введем перечисленные логические операции.

Конъюнкция — логическое умножение (от латинского conjunctio — союз, связь):

  • в естественном языке соответствует союзу «И» ;
  • в алгебре высказываний обозначение «&» ;
  • в языках программирования обозначение «And».

Конъюнкция — это логическая операция, ставящая в соответствие каждым двум простым (или исходным) высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. Если хотя бы одно из составляющих высказываний ложно, то и полученное из них с помощью союза «И» сложное высказывание также считается ложным.

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.

Источник

Основы логики. Логические операции

Презентация к уроку

Цели:

  • оказание помощи учащимся при решении задач, где необходимо построение таблиц истинности, применение логических операций в простых и сложных выражениях;
  • оказание помощи учащимся при подготовке к ЕГЭ;
  • оказание помощи учителю при организации подготовки учащихся к ЕГЭ.

Задачи:

  • отработать навыки по формированию представления об истории возникновения и эволюции логического мышления;
  • отработать навыки составления однозначной интерпретации произвольной информации на основе алгебры логики;
  • совершенствовать навыки формирования информационной культуры и потребности в приобретении знаний;
  • совершенствовать навыки самостоятельной работы.

Тип урока: Данный урок подходит как для изучения нового материала, так и для закрепления изученного.

Ход урока:

1. Организационный момент. Приветствие учащихся.

2. Теоретический материал: изучение, повторение

Историческая справка. Логика – это очень древняя наука.

Основы формальной логики заложил ученый Древней Греции – Аристотель (384 г.-322 г. до н.э.) . Заслуга ученого состоит в том, что он отделил форму мышления от содержания, попытался соединить логику и математику, разработал раздел теории доказательств.

Немецкий ученый Лейбниц (1646-1716) взглянул на логику Аристотеля через призму математики. Им написан трактат — “Азбука мыслей”, сжатый и краткий язык символов. Лейбниц разработал идею логического исчисления. Рассуждения обозначил буквами, сложные высказывания — формулами. В результате удалось содержательные рассуждения заменить формальными вычислениями.

Джордж Буль считается основоположником математической логики как самостоятельной дисциплины. В его работах логика обрела свой алфавит, свою орфографию и грамматику. Буль — автор известных произведений, в т.ч. работы “Математический анализ логики”(1847г.). Основной труд Джорджа Буля — “Исследование законов мысли”, в котором представлен раздел логики — алгебра высказываний.

Логика — это наука о формах и способах мышления.

Основными формами мышления являются

  • понятие,
  • высказывание,
  • умозаключение.

Понятие — это форма мышления, фиксирующая основные, существенные признаки объекта.

Пример. Клавиатура — устройство ввода символьной информации в компьютер.

Высказывание (суждение) — это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложным, либо истинным.

Пример: Все дети любят лечить зубы (ложь).

Все взрослые были детьми (истина).

Умозаключение — это форма мышления, с помощью которой из одного или нескольких суждений, может быть получено новое суждение (заключение).

Пример: доказательство теорем в геометрии.

Алгебра высказываний

Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание.

В алгебре высказываний высказывания обозначаются именами логических переменных, которые могут принимать лишь два значения: “истина” (1) и “ложь” (0).

Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок “и”, “или”, “не”.

Логическое отрицание (инверсия)

Присоединение частицы “не” к высказыванию называется операцией логического отрицания или инверсией.

На естественном языке: неверно, что. не

А – “Сегодня идет снег”

¬ А – “Неверно, что сегодня идет снег” или “Сегодня не идет снег”

Таблица истинности логического отрицания

А ¬ А
0 1
1 0

Инверсия высказывания истинна, если высказывание ложно, и ложна, когда высказывание истинно.

Логическое умножение (конъюнкция)

Объединение двух (или нескольких) высказываний в одно с помощью союза “и” называется операцией логического умножения или конъюнкцией.

На естественном языке: И.

Пример. А ^ B – “Сегодня светит солнце И дождь”

Таблица истинности логического умножения

А В А ^ B
0 0 0
0 1 0
1 0 0
1 1 1

Конъюнкция двух высказываний истинна тогда и только тогда, когда оба высказывания истинны, и ложна, когда хотя бы одно из высказываний ложно.

Логическое сложение (дизъюнкция)

Объединение двух (или нескольких) высказываний с помощью союза “или” называется операцией логического сложения или дизъюнкцией.

На естественном языке: ИЛИ.

Пример. А V B – В вазе лежат “яблоки” ИЛИ “груши”

Таблица истинности логического сложения

А В А V B
0 0 0
0 1 1
1 0 1
1 1 1

Дизъюнкция двух высказываний ложна тогда и только тогда, когда оба высказывания ложны, и истинна, когда хотя бы одно из высказываний истинно.

Логическое следование (импликация)

На естественном языке: если. то.

Пример. А —> B – Если выучить материал, то сдашь зачет.

Таблица истинности логического следования

А В А —> B
0 0 1
0 1 1
1 0 0
1 1 1

Импликация двух высказываний ложна только тогда, когда из истины следует ложь, и истинна в остальных случаях.

Логическое равенство (эквивалентность)

Обозначение: , , =.

На естественном языке: тогда и только тогда, когда

Пример. А B – Добиться результата в спорте можно тогда и только тогда, когда приложено максимум усилий.

Таблица истинности логического равенства

А В А B
0 0 1
0 1 0
1 0 0
1 1 1

Эквивалентность двух высказываний истина только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Порядок выполнения логических операций в сложном логическом выражении:

  • Инверсия ¬;
  • Конъюнкция ^;
  • Дизъюнкция V;
  • Импликация >;
  • Эквивалентность .

Для изменения указанного порядка выполнения логических операций используются скобки.

3. Практическая работа.

Учащиеся выполняют задания. (презентация, слайды 17-23). После выполнения задания учащиеся проверяют правильность решения.

Задание 1: Заполните таблицу. Истина – 1, Ложь — 0

Высказывание параллелограмм прямоугольник ромб квадрат
Противолежащие стороны параллельны и равны.
Все стороны равны.
Противолежащие углы равны, сумма соседних углов равна 180° .
Все углы прямые.
Диагонали пересекаются и точкой пересечения делятся пополам.
Диагонали равны.
Диагонали взаимно перпендикулярны и являются биссектрисами его углов.

Задание 2: Запишите высказывание “если яблоко зеленое или мелкое, то оно твердое”, используя знаки логических операций.

Задание 3: Определите результат логического выражения при заданных параметрах

Задание 4: Для какого имени истинно высказывание:

(Первая буква гласная) /\ (Четвёртая буква согласная) \/ (B слове четыре буквы)?

1) СЕРГЕЙ
2) АЛЕКСЕЙ
3) АНТОН
4) ИЛЬЯ

Задание 5. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z. Дан фрагмент таблицы истинности выражения F:

X Y Z F
1 0 0 0
0 1 0 0
0 0 1 0

Какое выражение соответствует F?

1) (X ^ Y) ? (X Z)
2) (X ^ Y) ? (X Z)
3) (¬Х ^ Y) ? (X Z)
4) ¬(X ^ Y) ? (X Z)

4. Итоги урока. Вопросы учеников.

5. Домашнее задание. Учить конспект, придумать аналогичные задания.

6. Подведение итогов урока

Анализ и оценка успешности достижения цели занятия. Определение перспективы последующей работы.

Источник

Читайте также:  Определите способ изложения нормы права при назначении
Оцените статью
Разные способы