Линейное уравнение с одной переменной 7 класс способы решения

Решение простых линейных уравнений

О чем эта статья:

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Читайте также:  Грыжа диска виды возможные способы лечения реферат

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

    Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на общий множитель, то есть 6.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

5х — 3х — 2х = — 12 — 1 + 15 — 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Найти неизвестную переменную.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = — 0, 18
Читайте также:  Понятие общественного способа производства

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = — 0,25

Источник

Решение линейных уравнений 7 класс

Для решения линейных уравнений используют два основных правила (свойства).

Свойство № 1
или
правило переноса

При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный .

Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

Вспомним, что у любого уравнения есть левая и правая часть.

Перенесем число « 3 » из левой части уравнения в правую.

Так как в левой части уравнения у числа « 3 » был знак « + », значит в правую часть уравнения « 3 » перенесется со знаком « − ».

Полученное числовое значение « x = 2 » называют корнем уравнения.

Не забывайте после решения любого уравнения записывать ответ.

Рассмотрим другое уравнение.

По правилу переноса перенесем « 4x » из правой части уравнения в левую, поменяв знак на противоположный.

Несмотря на то, что перед « 4x » не стоит никакого знака, мы понимаем, что перед « 4x » стоит знак « + ».

Теперь приведем подобные и решим уравнение до конца.

Свойство № 2
или
правило деления

В любом уравнении можно разделить левую и правую часть на одно и то же число .

Но нельзя делить на неизвестное!

Разберемся на примере, как использовать правило деления при решении линейных уравнений.

Число « 4 », которое стоит при « x », называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при « x » стоял коэффициент « 1 ».

Давайте зададим себе вопрос: «На что нужно разделить « 4 », чтобы
получить « 1 »?». Ответ очевиден, нужно разделить на « 4 ».

Используем правило деления и разделим левую и правую части уравнения на « 4 ». Не забудьте, что делить нужно и левую , и правую части.

Используем сокращение дробей и решим линейное уравнение до конца.

Как решить уравнение, если « x » отрицательное

Часто в уравнениях встречается ситуация, когда при « x » стоит отрицательный коэффициент. Как, например, в уравнении ниже.

Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить « −2 », чтобы получить « 1 »?». Нужно разделить на « −2 ».

−2x = 10 |:(−2)

−2x
−2

=

10
−2

x = −5
Ответ: x = −5

При делении на отрицательное число помните про правило знаков.

Примеры решения линейных уравнений

Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно применять оба свойства (правило переноса и правило деления).

Читайте также:  Способ познания который помогает получить количественные данные характеризующие изучаемое явление

Источник

Алгебра. 7 класс

Конспект урока

Решение линейных уравнений с одним неизвестным

Перечень рассматриваемых вопросов:

• Решение линейных уравнений.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Давайте вспомним, что называется корнем уравнения?

Корнем уравнения называют, такое значение переменной, при которой уравнение преобразуется в верное числовое равенство.

А что же означает решить уравнение?

Решить уравнение означает найти все его корни или доказать, что корней нет.

Давайте попробуем сформулировать теперь, как решать линейные уравнения и подумаем, а какие у нас могут быть случаи?

Решение линейного уравнения – это приведение его путем тождественных преобразований к стандартному виду.

Давайте решим уравнение:

Следовательно, уравнение не имеет корней.

А теперь давайте решим другое уравнение:

Попробуем решить уравнение:

При любом значении переменной, уравнение принимает вид верного равенства:

0 = 0, следовательно, уравнение имеет бесконечное множество корней.

Отсюда можно сделать вывод, что возможные варианты решения уравнения, зависят от того, какие значения принимает свободный член и коэффициент при переменной.

При решении уравнения вида возможны следующие три случая:

Замечательно, а теперь узнаем, можно ли проверить, является число корнем уравнения не решая его?

Да, конечно можно. Для этого нужно подставить в уравнение вместо переменной это число, если после упрощения, мы получаем верное равенство, то данное число будет являться корнем уравнения.

Давайте проверим, так ли это. Узнаем, является ли число

Замечательно. А теперь давайте попробуем порешать линейные уравнения первой степени.

является корнем уравнения.

уравнение к стандартному виду. Слагаемые, зависящие от икс, перенесём в левую часть уравнения, числа – в правую, изменяя их знаки на противоположные.

Разбор заданий тренировочного модуля.

содержащие переменной в правую часть, меняя знак на противоположный;

слагаемые, содержащие переменную в левую часть, не содержащие переменной, в правую часть, меняя знак на противоположный;

Источник

Оцените статью
Разные способы