Линейное уравнение с одним неизвестным способ решения

Алгебра. 7 класс

Решение линейных уравнений с одним неизвестным
Математические термины
Стандартный вид
Корень уравнения
Корни уравнения
Корень уравнения
Необходимо запомнить

При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.

В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное!

Схема решения линейного уравнения:

Как узнать линейное уравнение по внешнему виду? Линейными уравнениями называются не только уравнения вида $ax+b=0$, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду.

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное, это важно! А деление на число, или дробь числовую – это пожалуйста!

Пары для подстановки

Уравнение вида: $ax=b$, где коэффициент $a$ и свободный член $b$ неизвестены, нужно найти такие значения $a$ и $b$, при которых корень равен $13$.

Подберите не менее трех пар таких постановок с обоснованием своего выбора.

Для того, чтобы подобрать такие пары постановок, необходимо выполнение равенства частей уравнения, а это возможно в том случае, если в разложение на множители числа $b$ будет входить число $13$. Отсюда следует, что второй множитель в разложении числа будет искомое число $a$.

Число $39=13\cdot3$, значит $a=3$, $b=39$. Уравнение примет вид: $3x=39$.

Число $169=13\cdot13$, значит $a=13$, $b=169$. Уравнение примет вид: $13x=169$.

Число $1313=13\cdot101$, значит $a=101$, $b=1313$. Уравнение примет вид: $101x=1313$.

Источник

Алгебра. 7 класс

Конспект урока

Решение линейных уравнений с одним неизвестным

Перечень рассматриваемых вопросов:

• Решение линейных уравнений.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Давайте вспомним, что называется корнем уравнения?

Корнем уравнения называют, такое значение переменной, при которой уравнение преобразуется в верное числовое равенство.

А что же означает решить уравнение?

Решить уравнение означает найти все его корни или доказать, что корней нет.

Давайте попробуем сформулировать теперь, как решать линейные уравнения и подумаем, а какие у нас могут быть случаи?

Читайте также:  Кустовой способ выращивания ремонтантной малины

Решение линейного уравнения – это приведение его путем тождественных преобразований к стандартному виду.

Давайте решим уравнение:

Следовательно, уравнение не имеет корней.

А теперь давайте решим другое уравнение:

Попробуем решить уравнение:

При любом значении переменной, уравнение принимает вид верного равенства:

0 = 0, следовательно, уравнение имеет бесконечное множество корней.

Отсюда можно сделать вывод, что возможные варианты решения уравнения, зависят от того, какие значения принимает свободный член и коэффициент при переменной.

При решении уравнения вида возможны следующие три случая:

Замечательно, а теперь узнаем, можно ли проверить, является число корнем уравнения не решая его?

Да, конечно можно. Для этого нужно подставить в уравнение вместо переменной это число, если после упрощения, мы получаем верное равенство, то данное число будет являться корнем уравнения.

Давайте проверим, так ли это. Узнаем, является ли число

Замечательно. А теперь давайте попробуем порешать линейные уравнения первой степени.

является корнем уравнения.

уравнение к стандартному виду. Слагаемые, зависящие от икс, перенесём в левую часть уравнения, числа – в правую, изменяя их знаки на противоположные.

Разбор заданий тренировочного модуля.

содержащие переменной в правую часть, меняя знак на противоположный;

слагаемые, содержащие переменную в левую часть, не содержащие переменной, в правую часть, меняя знак на противоположный;

Источник

Линейное уравнение с одной переменной

Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.

Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:

При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.

Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.

Решить уравнение — значит найти множество всех его корней.

Линейное уравнение

Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.

В общем виде линейное уравнение имеет вид:

Где $k$ и $b$ — произвольные числа.

Примеры линейных уравнений

Приведём несколько примеров линейных уравнений:

Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.

Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.

Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.

Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.

Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.

Заметим, что каждое из данных равенств имеет общую форму:

$$kx+b=0 \Leftrightarrow kx=-b$$

они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.

Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.

Свойства линейных уравнений

Линейные уравнения обладают рядом специфических свойств, рассмотрим их:

Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:

$$x+2=0 \Rightarrow x=-2$$

Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).

Читайте также:  Как изменить способ оплаты спотифай

$$x+0=0-2 \Rightarrow x=-2$$

Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:

$$x+2=0 \Rightarrow (x+2)\cdot 4=0\cdot 4$$

Равносильные уравнения

Рассмотрим три уравнения:

$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).

При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.

Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.

Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.

Важно!
У равносильных уравнений множества их решений совпадают.

Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.

Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:

В дальнейшем мы будем часто использовать такую символику.

Свойства равенств

Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:

Рефлексивность. Любое число равно самому себе: $a=a$.

Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.

Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .

Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.

Приведем еще два свойства равенств, которые нам понадобятся дальше:

Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то

Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то

Примеры решения уравнений

Свойства равенств используются при решении уравнений. Покажем это на примере.

Задача 1.
Пусть нужно решить уравнение: $6x-42=0$

Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).

Получим уравнение: $6x=42$

Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.

Умножим обе части уравнения на $\frac<1><6>$ (разделим на $6$). Получим уравнение: $x=7$

Из свойства 5. следует, что последние два уравнения равносильны:

$$6x=42 \Leftrightarrow x=7$$

Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 \Leftrightarrow x=7$

Значит число $7$ есть корень исходного уравнения.

Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.

Читайте также:  Способ изучения свойств объектов

Приведем все слагаемые левой части уравнения к общему знаменателю:

Домножим обе части равенства на $\frac<16><7>$ чтобы избавиться от коэффициента при неизвестном, получим:

Сократим числа $7$ и $16$, получим:

Общий вид решений линейного уравнения

Решим уравнение: $kx+b=0$

Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.

Шаг 1.

Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.

$$k=0, b\neq 0 \Rightarrow 0\cdot x=-b$$

Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$x\in \oslash$$ что переводится как: $x$ принадлежит пустому множеству.

Шаг 2.

Коэффициент при неизвестной и свободный член отличны от нуля:

$$k\neq 0, b\neq 0 \Rightarrow kx=-b \Rightarrow x=\frac<-b>$$

Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$

Шаг 3.

Числа $k$ и $b$ принимают значения равное нулю, т.е:

$$k=0, b=0 \Rightarrow kx=-b \Rightarrow 0\cdot x=0$$

Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:

В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:

Задача №1.

Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$

Раскроем скобки и приведем подобные.

Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.

Домножим обе части равенства на $10$, тогда получим:

Задача №2.

Решите уравнение: $-36(6x+1)=9(4-2x)$

Раскроем скобки в обеих частях равенства.

Перенесем переменные вправо, а остальные слагаемые влево.

Разделим обе части уравнения на $198$ и получим ответ:

Сократим дробь на $18$.

Задача №3.

Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?

Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:

После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.

Теперь рассмотрим второй случай:

Разделим обе части равенства на $2$.

Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:

Задача №4.

Найдите корень уравнения:

Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.

После сокращения слева на $4$, а справа на $3$ получим:

$$(3m+5)\cdot 3=(5m+1)\cdot 4$$

$$3m\cdot 3+5\cdot 3=5m\cdot 4+1\cdot 4$$

В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.

Задача №5.

При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?

Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.

Обратим внимание на правую часть равенства и воспользуемся свойством:

Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.

Разделим обе части уравнения на число $-27$, получим:

Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.

Источник

Оцените статью
Разные способы