Лазерный способ бурения скважин

Применение лазеров для повышения отдачи нефтегазовых месторождений

Повышение отдачи нефте- и газоконденсатных месторождений одна из самых актуальных проблем добывающей отрасли России. Например, коэффициент извлечения нефти – КИН – у нас один из самых низких в мире. Не более 40%. Коэффициент газоотдачи также не высок: шестая часть голубого топлива остается в недрах.

Современные волоконные лазеры способны увеличить добычу на нефтегазовых месторождениях. Используя мощное лазерное излучение, можно добиться значительного увеличения добычи нефти и газа, как на осваиваемых, так и на действующих месторождениях. Например, коэффициент извлечения нефти может вырасти в 1,5 — 2 раза и достичь 70%. Лазерное бурение позволяет в боковых стволах скважин призабойной зоны нефтеносных пластов создавать разветвленную сеть шпуров диаметром от 50 до 70 миллиметров длиной до 10 до 100 метров.

В результате, при разбуривании сразу нескольких боковых стволов на мелкие разветвленные каналы, растет объем охвата всего нефтеносного слоя от одной вертикальной скважины. Гидроразрыв такой разветвленной сети каналов приводит к более значительному разрушению пород нефтеносного пласта, и как следствие повышению нефтеотдачи скважины. Поскольку предварительному лазерному разрыхлению подвергается породы нефтеносного пласта, гидроразрыв локализуется исключительно внутри нефтеносного слоя и не выходит за его пределы. Лазерная обработка нефтеносного пласта может осуществляться необходимое число раз до полного извлечения нефти и газа.

В результате проведения инициативных опытно-конструкторских работ был создан буровой инструмент с каналом лазерной обработки призабойной области. В лабораторных условиях проведены многочисленные исследования по лазерно-механическому бурению кернов нефтеносного песчаника волоконным лазером мощностью 2 кВт. В экспериментах имитировалось лазерное бурение бокового канала скважины внутри нефтеносного пласта. Лазерное излучение включалось всего на 10 секунд, а глубина шпура составила 4 см. В сравнении со скоростью работы обычных буровых инструментов, лазерный инструмент оказался эффективнее почти в 10 раз.

Инновационная технология лазерного бурения на нефть защищена патентами на изобретение в России и в США.

Технология повышения отдачи месторождений легко адаптируется к уже существующей системе добычи углеводородов. С поверхности земли в вертикальный ствол опускается буровая штанга с оптическим волокном. Также, в горизонт нефтяного пласта под давлением более 100 атмосфер подается углекислый газ. Он предотвращает возникновение горения. Лазер работает в импульсном режиме, не более 1 минуты, нагревая породу до 1200 градусов. После его отключения в рабочую зону подается вода, которая охлаждает породу до 200 градусов. Резкий перепад температур ослабляет прочность нефтеносной породы и дальнейшее механическое бурение легче и быстрее формирует разветвленную сеть каналов в призабойной зоне. Десятки таких микротоннелей значительно увеличивают объём охвата нефтеносного слоя.

По оценкам экспертов, увеличение коэффициента извлечения нефти хотя бы на 1% равноценно открытию сразу нескольких нефтяных месторождений, а рост газоотдачи на 1% полностью окупает обустройство месторождений и доставку голубого топлива потребителям.

Сегодня нет технических ограничений для быстрого внедрения лазерных комплексов в нефтегазодобычу. Например, налажен серийный выпуск энергоэффективных волоконных лазеров мощностью от 20 до 50 киловатт. Они доступны по цене и надежны: наработка на отказ достигает 100 000 часов. Массово выпускаются волоконно-оптические световоды, передающие излучение без потерь на расстояние около 2-х километров. А фундаментальные научные разработки в создании специальной контрольно-измерительной аппаратуры для спектрального анализа породы во время бурения и добычи, открывает широкие возможности для всего добывающего комплекса России.

Проведенные исследования показали перспективность инновационной технологии.

Группа компаний РНЛТ рассчитывает на заинтересованность, активную поддержку и участие ведущих нефтегазодобывающих компаний в промышленном освоении лазерных технологий. Тот, кто первым освоит это инновационное направление – будет мировым лидером.

РУССКИЕ НЕФТЕСЕРВИСНЫЕ ЛАЗЕРНЫЕ ТЕХНОЛОГИИ

Россия, 199034, Санкт-Петербург, В.О. 17-я линия, 4-6

Источник

Способ бурения скважин с использованием лазерной энергии и устройство для его реализации

Владельцы патента RU 2449106:

Читайте также:  Способы для семантизации лексики

Группа изобретений относится к горной промышленности и может быть использована для бурения скважин в рыхлых горных породах с одновременным креплением стенок скважины. Способ включает тепловое разупрочнение и оплавление породного массива с последующим формированием и укреплением стенок скважин при осевой подаче бурового снаряда. Тепловое разупрочнение породы и оплавление породной массы в стенках скважины осуществляют путем воздействия высокотемпературным пенетратором, разогретым лучами лазера, фокусируемыми на внутренние стенки и торцевую часть пенетратора, до температуры, превышающей температуру плавления горной породы на 200-250°. Устройство включает источник тепловой энергии, лебедку, грузонесущий кабель, высокотемпературный пенетратор, кристаллизатор-формователь, центратор. В качестве источника тепловой энергии использован лазер, который соединен через токосъемник, центратор и утяжелитель посредством волоконно-оптического кабеля с лазерной головкой, размещенной в полости трубы. Верхняя торцевая часть корпуса высокотемпературного пенетратора жестко соединена с трубой через кристаллизатор-формирователь, оснащенный расширителем скважины, свободно установленным на наружной поверхности кристаллизатора-формирователя, а наружная поверхность пенетратора образована вращением цепной линии вокруг вертикальной оси. Обеспечивает одновременное и качественное крепление и формирование стенок скважины в рыхлых и слабосвязных породах. 2 н.п. ф-лы, 2 ил.

Изобретение относится к горной промышленности и может быть использовано для бурения скважин в рыхлых породах, в частности в четвертичных отложениях и техногенных грунтах с одновременным долговечным и экологически чистым беструбным креплением при сооружении гидрогеологических и инженерных скважин различного назначения (на воду, водопонижающих, взрывных, для закрепления оползней, бортов карьеров и отвалов, для установки или сооружения свай в строительстве, укрепления фундаментов зданий и сооружений, прокладки коммуникаций и др.), при проходке и креплении верхних горизонтов, представленных рыхлыми или выветрелыми породами, а также креплении зон тектонических нарушений и изоляции флюидопроявлений и поглощений с применением в последнем случае относительно легкоплавких тампонажных материалов в условиях бурения геологоразведочных и эксплуатационных скважин.

Известен «Способ электротермомеханического бурения и устройство для его осуществления» (авт. св. SU N1555460, опубл. 07.04.1990), согласно которому породу разупрочняют пропусканием через нее электрического тока, бурят разупрочненную породу механическим инструментом, удаляют буровой шлам из скважины воздушной смесью. При этом шлам разделяют на фракции, затем крупную фракцию шлама выделяют, концентрируют и термомеханически разрушают в затрубном пространстве.

Недостатком способа является то, что этот способ способен только разупрочнять горную породу с последующим удалением продуктов разрушения и не обеспечивает закрепления ствола скважины прочным слоем уплотненной и термически преобразованной породы.

Известен «Способ электротермомеханического бурения и устройство для его осуществления» (патент RU №2038475, опубл. 27.06.1995), принятый за прототип. Согласно способу разупрочнение горной породы осуществляют предварительным ее высушиванием при 400-450 К, дегидратацией (возгонкой связанной воды) при 700-750 К, выжиганием органических примесей и диссоциацией (разложением) с выделением газообразной фазы (например, карбонатов с выделением CO2) при 750-950 К, а спекание, обжиг и оплавление уплотненной породы в стенках скважины осуществляют при 1800-2300 К. При этом разрушение горной породы осуществляется породоразрушающим инструментом впереди движущего забоя.

Однако этот способ не обеспечивает долговечной эксплуатации бурового инструмента, нагревателем которого служит электрический нагреватель, потребляемый СВЧ энергию. Наличие колонны бурильных труб и бурового станка при бурении требуют значительного времени при спускоподъемных операциях устройства, затрачиваемого при скручивании и раскручивании бурильных труб. Наличие породоразрушающего инструмента, установленного в нижней части пенетратора, уменьшает скорость бурения в случае попадания твердой горной породы впереди движущего забоя.

Известен «Способ электротермомеханического бурения и устройство для его осуществления» (авт. св. SU N1555460, опубл. 07.04.1990). Устройство для осуществления этого способа включает долото, наддолотник, токоприемник, изолирующий переходник, ветви многозаходной шнековой спирали, выполненные на наружной цилиндрической поверхности наддолотника.

Однако устройство способно только разупрочнять горную породу с последующим удалением продуктов разрушения и не обеспечивает закрепления ствола скважины прочным слоем уплотненной и термически преобразованной породы.

Читайте также:  Разные способы подстричь челку

Известно «Устройство для электротермического бурения скважин» (патент RU №2021465, опубл. 15.10.1994), включающее буровой снаряд, бурильную колонну, состоящую из буровых штанг, в которых проложен электрический кабель, источник электрической энергии, кристаллизатор-формователь стенок скважины, токоподвод, нагревательный элемент, пенетратор.

Недостатком этого устройства является то, что нагревательный элемент в этом устройстве расположен в центральной части корпуса пенетратора, который может обеспечивать максимальную удельную поверхностную мощность корпуса пенетратора, необходимую для плавления горной породы, только при бурении скважин диаметром до 60 мм. Для бурения же скважин больших диаметров требуется значительно большая мощность нагревательного элемента, обеспечивающая такую же удельную поверхностную мощность на значительно большей наружной площади корпуса пенетратора.

Известно «Устройство для электротермического бурения скважин» (патент RU №2182639, опубл. 20.05.2002), содержащее высокотемпературный полый электроизолятор с пазами в виде спирали, расположенными на его наружной поверхности, при этом полость и спиральные пазы заполнены высокотемпературным композиционным материалом электросопротивления, например карбидом кремния, что и представляет собой электронагреватель. Устройство содержит переходник, соединенный с корпусом пенетратора. Расширитель скважины свободно установлен в нижней части переходника, токоподвод, расположенный в верхней части устройства, соединен с композиционным материалом электросопротивления, заполняющим полость электроизолятора.

Недостатком этого устройства является наличие в нем нагревательного элемента — электросопротивления, выполненного ввиде спирали с незначительным сроком эксплуатации, и сложность конструкции высокотемпературного пенетратора, наличие бурильных штанг и бурового станка.

Известен «Способ электротермомеханического бурения и устройство для его осуществления» (патент RU №2038475, опубл. 27.06.1995), принятый за прототип. Устройство состоит из бурового станка с системой принудительной подачи, колонны бурильных труб с волноводом для канализации СВЧ-энергии, источника энергии, магнетрона, термомеханического пенетратора, в котором корпус нагревателя цилиндрической формы нижним торцом жестко соединен через теплоизолятор с породоразрушающим инструментом, выполненным в виде конусного шнека или пикобура, а верхним торцом жестко соединен через теплоизолятор с кристаллизатором-формователем, при этом верхняя часть кристаллизатора-формователя жестко соединена с бурильной колонной, оснащенной волноводом, а нагреватель состоит из двух частей, внутренняя часть которого жестко соединена с наружной частью нагревателя и выполнена сплошной.

Однако устройство не обеспечивает долговечной эксплуатации бурового инструмента, нагревателем которого служит электрический нагреватель, потребляемый СВЧ энергию. Наличие колонны бурильных труб и бурового станка при бурении требуют значительного времени при спускоподьемных операциях устройства, затрачиваемого при скручивании и раскручивании бурильных труб.

Техническим результатом является упрощение способа бурения скважин с одновременным качественным креплением и формированием стенок скважин в рыхлых и слабосвязных породах.

Технический результат достигается тем, что в способе бурения рыхлых горных пород с использованием лазерной энергии, включающем тепловое разупрочнение и оплавление породного массива с последующим формированием и укреплением стенок скважин при осевой подаче бурового снаряда, тепловое разупрочнение породы и оплавление породной массы в стенках скважины осуществляют путем воздействия высокотемпературным пенетратором, разогретым лучами лазера, фокусируемыми на внутренние стенки и торцевую часть пепетратора до температуры, превышающей температуру плавления горной породы на 200-250°.

Техническим результатом устройства является упрощение конструкции.

Технический результат достигается тем, что в устройстве для бурения скважин, включающем источник тепловой энергии, лебедку, грузонесущий кабель, высокотемпературный пенетратор, кристаллизатор-формователь, центратор, в качестве источника энергии использован лазер, который соединен через токосъемник, центратор и утяжелитель посредством волоконно-оптического кабеля с лазерной головкой, размещенной в полости трубы, при этом верхняя торцевая часть корпуса пенетратора жестко соединена с трубой через кристаллизатор-формирователь, оснащенный расширителем скважины, свободно установленным на наружной поверхности кристаллизатора-формирователя, а наружная поверхность пенетратора образована вращением цепной линии вокруг вертикальной оси.

На фиг.1 показана общая схема предлагаемого устройства; на фиг.2 показано устройство высокотемпературного пенетратора.

Устройство для бурения скважин (фиг.1) содержит буровой снаряд, подвешенный на грузонесущем кабеле 6 и буровую самоходную установку, при этом буровой снаряд состоит из высокотемпературного пенетратора 1, трубы 2 в полости которой размещена лазерная головка 3, утяжелителя 4 и центратора 5. Самоходная буровая установка включает в себя дизель-генератор 7, двигатель 8, лебедку 9, на барабан которой намотан грузонесущий кабель 6, внутри которого размещен волоконно-оптический кабель, один конец которого соединен с источником тепловой энергии — лазером 10 через токосъемник 11. а второй конец соединен с лазерной головкой 3, через центратор 5 и утежелитель 4, при этом лучи лазера от лазерной головки 3 сфокусированы на внутренние стенки и торцевую часть высокотемпературного пенетратора 1 сплошного забоя, наружная поверхность которого образована вращением цепной линии вокруг вертикальной оси.

Читайте также:  Классификация способов управления доступом

Высокотемпературный пенетратор 1 сплошного забоя (фиг.2) состоит из корпуса 12, выполненного из жаропрочного материала, например, из силицированного графита (SiC+Si), кристаллизатора-формователя 13 и расширителя скважины 14.

Способ бурения реализуется предлагаемым устройством. Устройство работает следующим образом. После сборки бурового снаряда, в состав которого входит высокотемпературный пенетратор 1 сплошного забоя, труба 2, в полости которой размещена лазерная головка 3, утяжелитель 4 и центратор 5, и постановки его на забой скважины при помощи лебедки 9, по грузонесущему кабелю 6 — по волоконно-оптическому кабелю к лазерной головке 3 подается лазерная энергия от лазера 10, лучи которого фокусируются на внутренние стенки корпуса пенетратора 1 и его внутреннюю торцевую часть. При этом корпус пенетратора 1 нагревается до рабочей температуры за счет преобразования лазерной энергии в тепловую, превышающую температуру плавления горной породы на 200-250°С, и расплавляет горную породу. Под действием осевого давления на забой, создаваемого весом снаряда, пенетратор погружается в горную породу. При этом образовавшийся расплав уплотняется и частично вытесняется по кратчайшему пути в зону охлаждения, где он застывает и под действием кристаллизатора-формователя 13 и расширителя скважины 14 и формы пенетратора 1 и принимает заданную форму, образуя на стенках скважины прочный непроницаемый слой, выполняя при этом роль обсадной трубы.

Материал, из которого выполнены корпус пенетратора 1, кристаллизатор-формователь 13 и расширитель 14 скважины, является наилучшим с точки зрения минимального прилипания (адгезии) застывшего расплава и не стирается при механическом трении о горную породу при формировании стенок скважины, а также надежно работает в окислительной среде расплава горной породы и на воздухе без потерь массы в условиях высоких температур без применения инертных газов и хладогена.

Благодаря использованию грузонесущего кабеля и лебедки значительно сокращается время при спускоподъемных операциях бурового снаряда и материальные затраты.

Использование лазера и грузонесущего кабеля, оснащенного волоконно-оптическим кабелем для транспортирования лазерной энергии к корпусу пенетратора для его нагрева, исключая при этом нагревательный элемент, многократно увеличивает его срок эксплуатации, упрощает конструкцию и способ.

1. Способ бурения рыхлых горных пород с использованием лазерной энергии, включающий тепловое разупрочнение и оплавление породного массива с последующим формированием и укреплением стенок скважин при осевой подаче бурового снаряда, отличающийся тем, что тепловое разупрочнение породы и оплавление породной массы в стенках скважины осуществляют путем воздействия высокотемпературным пенетратором, разогретым лучами лазера, фокусируемыми на внутренние стенки и торцевую часть пенетратора, до температуры, превышающей температуру плавления горной породы на 200-250°C.

2. Устройство для бурения рыхлых горных пород, включающее источник тепловой энергии, лебедку, грузонесущий кабель, высокотемпературный пенетратор, кристаллизатор-формователь, центратор, отличающееся тем, что в качестве источника тепловой энергии использован лазер, который соединен через токосъемник, центратор и утяжелитель посредством волоконно-оптического кабеля с лазерной головкой, размещенной в полости трубы, при этом верхняя торцевая часть корпуса высокотемпературного пенетратора жестко соединена с трубой через кристаллизатор-формирователь, оснащенный расширителем скважины, свободно установленным на наружной поверхности кристаллизатора-формирователя, а наружная поверхность пенетратора образована вращением цепной линии вокруг вертикальной оси.

Источник

Оцените статью
Разные способы