Лабораторный способ получения углекислого газа

Лабораторные способы получения неорганических веществ

Основные способы получения (в лаборатории) конкретных веществ, относящихся к изученным классам неорганических соединений.

Лабораторные способы получения веществ отличаются от промышленных:

Лабораторные способы получения веществ Промышленные способы получения веществ
Реагенты могут быть редкими и дорогими Реагенты распространенные в природе и дешевые
Условия реакции мягкие, без высоких давлений и сильного нагревания Условия реакции могут быть довольно жесткими, допустимы высокие давления и температуры
Как правило, реагенты — жидкости или твердые вещества Реагенты — газы или жидкости, реже твердые вещества

Получение углекислого газа в лаборатории

Углекислый газ CO2 в лаборатории получают при помощи аппарата Киппа при взаимодействии соляной кислоты с мелом или мрамором:

Получение угарного газа в лаборатории

В лаборатории угарный газ проще всего получить, действуя концентрированной серной кислотой на муравьиную кислоту:

HCOOH → H2O + CO

Получение сероводорода в лаборатории

Сероводород в лаборатории легко получить действием разбавленной серной кислоты на сульфиды металлов, например, сульфид железа (II):

Эта реакция также проводится в аппарате Киппа.

Получение аммиака в лаборатории

Аммиак в лаборатории получают при нагревании смеси солей аммония с щелочами.

Например , при нагревании смеси хлорида аммония с гашеной известью:

Эти вещества тщательно перемешивают, помещают в колбу и нагревают.

Получение азотной кислоты в лаборатории

Азотную кислоту в лаборатории получают действием концентрированной серной кислоты на кристаллический нитрат натрия и калия при небольшом нагревании:

При этом менее летучая кислота вытесняет более летучую кислоту из соли.

При более сильном нагревании образуется сульфат натрия, но и образующаяся азотная кислота разлагается.

Получение ортофосфорной кислоты в лаборатории

При взаимодействии ортофосфата кальция с серной кислотой при нагревании образуется ортофосфорная кислота:

Получение кремния в лаборатории

В лаборатории кремний получают при взаимодействии смеси чистого песка с порошком магния:

2Mg + SiO2→ 3MgO + Si

Получение кислорода в лаборатории

Кислорода в лаборатории можно получить при разложении целого ряда неорганических веществ.

Читайте также:  Классификация ценных бумаг по способу передачи прав

Чаще всего в лаборатории кислород получают разложением перманганата калия:

Выделяющийся кислород можно собрать вытеснением воздуха:

Также кислород можно собирать методом вытеснения воды:

Обнаружить кислород можно очень просто: тлеющая лучинка вспыхивает в атмосфере кислорода.

Кислород можно получить также разложением пероксида водорода:

Реакция катализируется оксидом марганца (IV) MnO2.

Разложение бертолетовой соли KClO3 — еще один способ получения кислорода в лаборатории:

2KClO3 → 2KCl + 3O2

Реакция также протекает в присутствии катализатора, оксида марганца (IV) MnO2.

Получение водорода в лаборатории

Водород в лаборатории можно получить различными методами.

Под действием электрического тока вода разлагается на водород и кислород:

При взаимодействии минеральных кислот (не сильных окислителей) с активными металлами и металлами средней активности также образуется водород.

Например , соляная кислота реагирует с цинком с образованием водорода:

Zn + 2HCl → ZnCl2 + H2

Собирать водород можно методом вытеснения воздуха, так как водород — гораздо более легкий газ, чем воздух.

Также для собирания водорода подходит метод вытеснения воды, так как водород плохо растворим в воде:

Водород выделяется также при взаимодействии активных металлов (расположенных в ряду активности до магния) с водой.

Например , натрий активно реагирует с водой с образованием водорода:

2Na + 2H2O → 2NaOH + H2

Получение хлора в лаборатории

Стр. 162в лаборатории можно получить различными методами.

Под действием электрического тока вода разлагается на водород и кислород:

При взаимодействии минеральных кислот (не сильных окислителей) с активными металлами и металлами средней активности также образуется водород.

Получение хлороводорода в лаборатории

Стр. 162в лаборатории можно получить различными методами.

Под действием электрического тока вода разлагается на водород и кислород:

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Углекислый газ

Углекислый газ (двуокись углерода, диоксид углерода) занимает важнейшее место среди технических газов, он широко используется практически во всех отраслях промышленности и агропромышленного комплекса. На долю СО 2 приходится 10% всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Направления использования углекислого газа в различных агрегатных состояниях многообразны – пищевая промышленность, сварочные газы и смеси, пожаротушение и т.д. Всё больше находит применение и его твердая фаза – сухой лёд, от заморозки, сухих брикетов до очистки поверхностей (бластинга).

Читайте также:  Способы по восстановлению imei

Получение

Извне углекислоту получить нельзя по причине того, что в атмосфере ее почти не содержится. Животные и человек получают её при полном расщеплении пищи, поскольку белки, жиры, углеводы, построенные на углеродной основе, при сжигании с помощью кислорода в тканях образуют углекислый газ (СО 2 ).

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). В пищевых целях используется газ, образующийся при спиртовом брожении. Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества СО 2 получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например, мрамора, мела или соды с соляной кислотой. Побочные источники производства СО 2 — продукты горения; брожение; производство жидкого аммиака; установки риформинга; производство этанола; природные источники.

При получении углекислого газа в промышленных масштабах используют три основные группы сырья.

Группа 1 — источники сырья, из которых можно производить чистый СО 2 без специального оборудования для повышения его концентрации:

  • газы химических и нефтехимических производств с содержанием 98-99% СО 2 ;
  • газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99% СО 2 ;
  • газы из естественных источников с 92-99% СО 2 .

Группа 2 — источники сырья, использование которых обеспечивает получение чистого СО 2 :

  • газы малораспространенных химических производств с содержанием 80-95% СО 2 .

Группа 3 — источники сырья, использование которых дает возможность производить чистый СО 2 только с помощью специального оборудования:

  • газовые смеси, состоящие в основном из азота и углекислого газа (продукты сгорания углеродсодержащих веществ с содержанием 8-20% СО 2 ;
  • отходящие газы известковых и цементных заводов с 30-40% СО 2 ;
  • колошниковые газы доменных печей с 21-23% СО 2 ;
  • состоящие в основном из метана и углекислого газа и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45% СО 2 ;
  • попутные газы при добыче природного газа и нефти с содержанием 20-40% СО 2 .

Применение

По ряду оценок, потребление СО2 на мировом рынке превышает 20 млн. метрических тонн в год. Столь высокий уровень потребления формируется под влиянием требований пищевой промышленности и нефтепромысловых предприятий, технологий газирования напитков и других промышленных нужд, например, снижения показателя Ph установок водоочистки, проблем металлургии (в том числе использования сварочного газа) и т.д.

Потребление углекислого газа неуклонно растет, поскольку расширяются сферы его применения, которые охватывают задачи от промышленного назначения до пищевого производства – консервация продуктов, в машиностроении от сварочного производства и приготовления защитных сварочных смесей до очистки поверхностей деталей гранулами «сухого льда», в сельском хозяйстве для подкормки растений, в газовой и нефтяной промышленности при пожаротушении.

Читайте также:  Очистка монет электролизным способом

Основные области применения СО 2 :

  • в машиностроении и строительстве (для сварки и прочее);
  • для холодной посадки частей машин;
  • в процессах тонкой заточки;
  • для электросварки, основанной на принципе защиты расплавленного металла от вредного воздействия атмосферного воздуха;
  • в металлургии;
  • продувка углекислым газом литейных форм;
  • при производстве алюминия и других легкоокисляющихся металлов;
  • в сельском хозяйстве для создания искусственного дождя;
  • в экологии заменяет сильнодействующие минеральные кислоты для нейтрализации щелочной отбросной воды;
  • в изготовлении противопожарных средств;
  • применяется в углекислотных огнетушителях в качестве огнетушащего вещества, эффективно останавливает процесс горения;
  • в парфюмерии при изготовлении духов;
  • в горнодобывающей промышленности;
  • при методе беспламенного взрыва горных пород;
  • в пищевой промышленности;
  • используется как консервант и обозначается на упаковке кодом Е290;
  • в качестве разрыхлителя теста;
  • для производства газированных напитков;

Напитки с углекислотой

Газирование напитков может происходить одним из двух путей:

  1. При производстве популярных сладких и минеральных вод используется механический способ газирования, который предполагает насыщение углекислым газом какой-либо жидкости. Для этого необходимо специальное оборудование (сифоны, акратофоры, сатураторы) и баллоны со сжатым углекислым газом.
  2. При химическом способе газирования углекислоту получают в процессе брожения. Таким образом получается шампанское вино, пиво, хлебный квас. Углекислота в содовых водах получается в результате реакции соды с кислотой, сопровождающейся бурным выделением углекислого газа.

СО 2 как сварочный газ

Начиная с 1960 года широкое распространение получила сварка легированных и углеродистых сталей в среде углекислого газа (СО 2 ), отвечающего требованиям ГОСТ 8050. В последнее время все большее распространение в сварочных технологиях машиностроительных предприятий находит применение сварочных газовых смесей аргона и гелия, при этом многие наиболее востребованные газовые смеси включают в себя небольшое количество активных газов (СО 2 или О 2 ), необходимых для стабилизации сварочной дуги. Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом по-прежнему продолжает оставаться углекислый газ СО 2 , что объясняется физическими свойствами этого защитного газа и его доступностью.

Чтобы уточнить стоимость или получить дополнительную консультацию,
вы можете позвонить по тел.: +7 (495) 545-44-62 или отправить запрос .

Источник

Оцените статью
Разные способы