Серная кислота
Серная кислота
Строение молекулы и физические свойства
Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.
Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.
Валентность серы в серной кислоте равна VI.
Способы получения
1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.
Основные стадии получения серной кислоты :
- Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
- Очистка полученного газа от примесей.
- Окисление сернистого газа в серный ангидрид.
- Взаимодействие серного ангидрида с водой.
Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):
Аппарат | Назначение и уравнения реакций |
Печь для обжига | 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С |
Циклон | Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз. |
Электрофильтр | Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра). |
Сушильная башня | Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота. |
Теплообменник | Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата. |
Контактный аппарат | 2SO2 + O2 ↔ 2SO3 + Q В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):
Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню. |
Поглотительная башня | Получение H2SO4 протекает в поглотительной башне. Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3. Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю. |
Общие научные принципы химического производства:
- Непрерывность.
- Противоток
- Катализ
- Увеличение площади соприкосновения реагирующих веществ.
- Теплообмен
- Рациональное использование сырья
Химические свойства
Серная кислота – это сильная двухосновная кислота .
1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:
По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:
HSO4 – ⇄ H + + SO4 2–
2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например , серная кислота взаимодействует с оксидом магния:
Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:
Серная кислота взаимодействует с амфотерным гидроксидом алюминия:
3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).
Например , серная кислота взаимодействует с гидрокарбонатом натрия:
Или с силикатом натрия:
Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:
Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:
4. Т акже серная кислота вступает в обменные реакции с солями.
Например , серная кислота взаимодействует с хлоридом бария:
5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.
Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):
Серная кислота взаимодействует с аммиаком с образованием солей аммония:
Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.
Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.
При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:
При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:
6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.
Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):
Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:
Источник
Серная кислота
Серная кислота — сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.
Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.
Замечу, что существует олеум — раствор SO3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется при изготовлении красителей, органическом синтезе и в производстве серной кислот.
Получение
Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении образовавшегося SO2 до SO3 и последующим взаимодействием с водой.
Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:
В окислительной башне смешивают оксиды азота (II) и (IV) с воздухом:
Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием нитрозилсерной кислоты:
В ходе гидролиза нитрозилсерной кислоты получают азотистую кислоту и серную:
В упрощенном виде нитрозный способ можно записать так:
Химические свойства
В водном растворе диссоциирует ступенчато.
Сильная кислота. Реагирует с основными оксидами, основаниями, образуя соли — сульфаты.
KOH + H2SO4 = KHSO4 + H2O (гидросульфат калия, соотношение 1:1 — кислая соль)
2KOH + H2SO4 = K2SO4 + 2H2O (сульфат калия, соотношение 2:1 — средняя соль)
С солями реакция идет, если в результате выпадает осадок, образуется газ или слабый электролит (вода). Серная кислота, как и многие другие кислоты, способна растворять осадки.
Серная кислота окисляет неметаллы — серу и углерод — соответственно до угольной кислоты (нестойкой) и сернистого газа.
Реакции с металлами
Реакции разбавленной серной кислоты с металлами не составляют никаких трудностей: она реагирует как самая обычная кислота, например HCl. Все металлы, стоящие до водорода, вытесняют из серной кислоты водород, а стоящие после — не реагируют с ней.
Подчеркну, что реакции разбавленной серной кислоты с железом и хромом не сопровождаются переходом этих элементов в максимальную степень окисления. Они окисляются до +2.
Cu + H2SO4(разб.) ⇸ (реакция не идет, медь не может вытеснить водород из кислоты)
Концентрированная серная кислота ведет себя совершенно по-иному. Водород никогда не выделяется, вместо него с активными металлами выделяется H2S, с металлами средней активности — S, с малоактивными металлами — SO2.
Холодная концентрированная серная кислота пассивирует Al, Cr, Fe, Ni, Be, Co. При нагревании или амальгамировании данных металлов реакция идет.
Обратите особое внимание, что при реакции железа, хрома с концентрированной серной кислотой достигается степень окисления +3. В подобных реакциях с разбавленной серной кислотой (написаны выше) достигается степень окисления +2.
Иногда в тексте задания даны подсказки. Например, если написано, что выделился газ с неприятным запахом тухлых яиц — речь идет об H2S, если же написано, что выделилось простое вещество — речь о сере (S).
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Серная кислота
Серная кислота , H2SO4, сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях — тяжёлая маслянистая жидкость без цвета и запаха. В технике серную кислоту называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO3 : Н2О меньше 1, то это водный раствор серной кислоты, если больше 1, — раствор SO3 в серной кислоте.
Природные залежи самородной серы сравнительно невелики. Общее содержание серы в земной коре составляет 0,1%. Сера содержится в нефти, каменном угле, горючих и топочных газах. Чаще сера встречается в природе в виде соединений с цинком, медью и другими металлами. Следует отметить, что доля колчедана и серы в общем балансе сернокислотного сырья постепенно уменьшается, а доля серы, извлекаемой из различных отходов, постепенно возрастает. Возможности получения серной кислоты из отходов весьма значительны. Использование отходящих газов цветной металлургии позволяет получать, без специальных затрат в сернокислотных системах на обжиг серосодержащего сырья.
Физические и химические свойства серной кислоты
Стопроцентная H2SO4 (SO3 х H2O) называется моногидратом. Соединение не дымит, в концентрированном виде не разрушает черные металлы, являясь при этом одной из самых сильных кислот;
- вещество пагубным образом действует на растительные и животные ткани, отнимая и них воду, вследствие чего они обугливаются.
- кристаллизуется при 10,45 «С;
- tkип 296,2 «С;
- плотность 1,9203 г/см3;
- теплоёмкость 1,62 дж/г.
Серная кислота смешивается с Н2О и SO3 в любых соотношениях, образуя соединения:
- H2SO4 х 4 H2O (tпл — 28,36 «С),
- H2SO4 х 3 H2O (tпл — 36,31 «С),
- H2SO4 х 2 H2O (tпл — 39,60 «С),
- H2SO4 х H2O (tпл — 8,48 «С),
- H2SO4 х SO3 (H2S2O7 — двусерная или пиросерная кислота, tпл 35,15 «С) — олеум,
- H2SO х 2 SO3 (H2S3O10 — трисерная кислота, tпл 1,20 «C).
При нагревании и кипении водных растворов серной кислоты, содержащих до 70% H2SO4, в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты. Раствор 98,3% H2SO4 (азеотропная смесь) при кипении (336,5 «С) перегоняется полностью. Серная кислота, содержащая свыше 98,3% H2SO4, при нагревании выделяет пары SO3.
Концентрированная серная кислота — сильный окислитель. Она окисляет HI и НВг до свободных галогенов. При нагревании окисляет все металлы, кроме Au и платиновых металлов (за исключением Pd). На холоде концентрированная серная кислота пассивирует многие металлы, в том числе РЬ, Cr, Ni, сталь, чугун. Разбавленная серная кислота реагирует со всеми металлами (кроме РЬ), предшествующими водороду в ряду напряжении, например: Zn + H2SO4 = ZnSO4 + Н2.
Как сильная кислота H2SO4 вытесняет более слабые кислоты из их солей, например борную кислоту из буры:
Na2B4O7 + H2SO4 + 5 H2O = Na2SO4 + 4 H2BO3,
а при нагревании вытесняет более летучие кислоты, например:
NaNO3 + H2SO4 = NaHSO4 + HNO3.
Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы — ОН. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена или диэтилового эфира. Обугливание сахара, целлюлозы, крахмала и других углеводов при контакте с серной кислотой объясняется также их обезвоживанием. Как двухосновная, серная кислота образует два типа солей: сульфаты и гидросульфаты.
Температура замерзания серной кислоты: | |
концентрация, % | темп.замерз., «С |
74,7 | -20 |
76,4 | -20 |
78,1 | -20 |
79,5 | -7,5 |
80,1 | -8,5 |
81,5 | -0,2 |
83,5 | 1,6 |
84,3 | 8,5 |
85,7 | 4,6 |
87,9 | -9 |
90,4 | -20 |
92,1 | -35 |
95,6 | -20 |
Сырьё для получения серной кислоты
Сырьём для получения серной кислоты могут служить: сера, серный колчедан FeS2, отходящие газы печей окислительного обжига сульфидных руд Zn, Сu, РЬ и других металлов, содержащие SO2. В России основное количество серной кислоты получают из серного колчедана. Сжигают FeS2 в печах, где он находится в состоянии кипящего слоя. Это достигается быстрым продуванием воздуха через слой тонко измельченного колчедана. Получаемая газовая смесь содержит SO2, O2, N2, примеси SO3, паров Н2О, As2O3, SiO2 и другие, и несёт много огарковой пыли, от которой газы очищаются в электрофильтрах.
Способы получения серной кислоты
Серную кислоту получают из SO2 двумя способами: нитрозным (башенным) и контактным.
Переработка SO2 в серную кислоту по нитрозному способу осуществляется в продукционных башнях — цилиндрических резервуарах (высотой 15 м и более), заполненных насадкой из керамических колец. Сверху, навстречу газовому потоку разбрызгивается «нитроза» — разбавленная серная кислота, содержащая нитрозилсерную кислоту NOOSO3H, получаемую по реакции:
N2O3 + 2 H2SO4 = 2 NOOSO3H + H2O .
Окисление SO2 окислами азота происходит в растворе после его абсорбции нитрозой. Водою нитроза гидролизуется:
NOOSO3H + H2O = H2SO4 + HNO2.
Сернистый газ, поступивший в башни, с водой образует сернистую кислоту:
SO2 + H2O = H2SO3.
Взаимодействие HNO2 и H2SO3 приводит к получению серной кислоты:
2 HNO2 + H2SO3 = H2SO4 + 2 NO + H2O.
Выделяющаяся NO превращается в окислительной башне в N2O3 (точнее в смесь NO + NO2). Оттуда газы поступают в поглотительные башни, где навстречу им сверху подаётся серная кислота. Образуется нитроза, которую перекачивают в продукционные башни. Таким образом осуществляется непрерывность производства и круговорот окислов азота. Неизбежные потери их с выхлопными газами восполняются добавлением HNO3.
Серная кислота, получаемая нитрозным способом, имеет недостаточно высокую концентрацию и содержит вредные примеси (например, As). Её производство сопровождается выбросом в атмосферу окислов азота («лисий хвост», названный так по цвету NO2).
Принцип контактного способа производства серной кислоты был открыт в 1831 П. Филипсом (Великобритания). Первым катализатором была платина. В конце 19 — начале 20 вв. было открыто ускорение окисления SO2 в SO3 ванадиевым ангидридом V2O5. Особенно большую роль в изучении действия ванадиевых катализаторов и их подборе сыграли исследования советских учёных А. Е. Ададурова, Г. К. Борескова, Ф. Н. Юшкевича.
Современные сернокислотные заводы строят для работы по контактному методу. В качестве основы катализатора применяются окислы ванадия с добавками SiO2, Al2O3, K2O, CaO, BaO в различных соотношениях. Все ванадиевые контактные массы проявляют свою активность только при температуре не ниже
420 «С. В контактном аппарате газ проходит обычно 4 или 5 слоев контактной массы. В производстве серной кислоты контактным способом обжиговый газ предварительно очищают от примесей, отравляющих катализатор. As, Se и остатки пыли удаляют в промывных башнях, орошаемых серной кислотой. От тумана серную кислоту (образующейся из присутствующих в газовой смеси SO3 и H2O) освобождают в мокрых электрофильтрах. Пары H2O поглощаются концентрированной серной кислотой в сушильных башнях. Затем смесь SO2 с воздухом проходит через катализатор (контактную массу) и окисляется до SO3:
SO2 + 1/2 O2 = SO3.
Серный ангидрид далее поглощается водой, содержащейся в разбавленной H2SO4:
SO3 + H2O = H2SO4.
В зависимости от количества воды, поступившей в процесс, получается раствор серной кислоты в воде или олеум.
Посредством данного метода сейчас вырабатывается порядка 80% H2SO4 в мире.
Применение серной кислоты
Серная кислота может служить для очистки нефтепродуктов от сернистых, непредельных органических соединений.
В металлургии серная кислота применяется для удаления окалины с проволоки, а также листов перед лужением и оцинкованием (разбавленная), для травления разичных металлических поверхностей перед покрытием их хромом, медью, никелем и др. Также с помощью серной кислоты разлагают комплексные руды (в частности, урановые).
В органическом синтезе серная кислота концентрированная является необходимым компонентом нитрующих смесей, а также сульфирующим средством при получении многих красителей и лекарственных веществ.
Широко применяется серная кислота для производства удобрений, этилового спирта, искусственного волокна, капролактама, двуокиси титана, анилиновых красителей и целого ряда других химических соединений.
Серная кислота отработанная (отход) применяется в химической, металлургической, деревообрабатывающей и других отраслях промышленности Серная кислота аккумуляторная применяется в производстве свинцово-кислотных источников тока.
Источник