Лабораторные способы получения этилового спирта

Лабораторные методы получения спиртов

1. Гидролиз галогеналканов в водных растворах щелочей происходит по механизму нуклеофильного замещения (см. лекцию №12)

Гидратация алкенов

Присоединение воды к алкену протекает в присутствии кислотных катализаторов (H2SO4, H3PO4, оксид алюминия и другие носители, обработанные кислотами).

Этим методом в крупных масштабах получают низшие спирты, из них важнейшим продуктом является этанол:

из пропилена и н-бутилена — изопропиловый и н-бутиловый спирты:

а из изобутилена — трет-бутиловый спирт:

Электрофильный механизм гидратации уже рассматривался ранее. Присоединение протекает по правилу марковникова, реакционная способность алкенов определяется сравнительной стабильностью образующихся карбокатионов и изменяется в ряду:

3. Восстановление карбонильных соединений (кетонов и альдегидов), сложных эфиров

Альдегиды и кетоны легко восстанавливаются водородом в присутствии катализаторов (например, Ni, Pd, Pt) в соответствующие первичные и вторичные спирты:

Для восстановления карбонильной группы также широко используются комплексные гидриды металлов — боргидрид натрия NaBH4 (растворитель — вода, этанол) или алюмогидрид лития LiAlH4 (растворитель — абсолютный эфир). Карбонильные соединения также можно восстанавливать атомарным водородом, образующимся при взаимодействии металлического натрия с этиловым спиртом.

Синтезы спиртов с использованием реактивов Гриньяра

При взаимодействии реактивов Гриньяра (RMgHal) и литийорганических соединений с карбонильными производными образуются алкоголяты металлов, которые при действии воды или разбавленной кислоты можно превратить в соответствующие спирты. Взаимодействие реактивов гриньяра с формальдегидом, другими альдегидами и кетонами представляет собой прекрасный способ получения первичных, вторичных и третичных спиртов:

Промышленные методы получения спиртов

1. Окисление алканов (синтез спиртов С1020). Спирты нормального строения С1020 представляют интерес в качестве сырья для синтеза поверхностно-активных веществ. Производство этих спиртов путем окисления парафина по методу А.Н. Башкирова было впервые разработано и реализовано в СССР. Окисление ведут кислородом воздуха в присутствии 4-5% борной кислоты, которая связывает образующиеся спирты в эфиры, не подвергающиеся дальнейшему окислению:

Полученные спирты, образующиеся без деструкции углеродной цепи, являются преимущественно вторичными, с примесью гликолей и кетоспиртов.

Эта фракция как сырье для ПАВ имеет небольшую ценность, и метод широкого распространения не получил.

2. Синтез спиртов по методу Фишера-Тропша. При высоком давлении СО и Н2 образует смесь кислородсодержащих соединений (синтол) — спиртов, альдегидов, кетонов, карбоновых кислот и сложных эфиров. Этот метод нашел широкое применение для синтеза метанола:

Читайте также:  Способы двигательной физкультурной деятельности кратко

3. Процесс оксосинтеза. Реакция открыта Реленом в 1938 г. Назначение процесса – получение из алкенов и синтез-газа (СО+Н2) альдегидов и их гидрирование до спиртов:

Первичные спирты С1018 линейного строения являются сырьем для производства ПАВ типа алкилсульфатов, которые отличаются высоким индексом биоразлагаемости, спирты С79 служат полупродуктами для получения сложноэфирных пластификаторов, особенно фталатов.

4. Ферментативный гидролизуглеводов под действием бактерий Clostridium acetobutilicum. Этим методом получают н-бутанол в смеси с ацетоном.

Физические свойства спиртов

Многие физические и химические свойства спиртов, особенно низкомолекулярных, (относительно высокие температуры кипения, значительная растворимость в воде), обусловлены способностью гидроксильной группы образовывать межмолекулярные водородные связи.

По мере удлинения углеводородной цепи относительное влияние водородных связей уменьшается, и одноатомные спирты с длинной углеродной цепью приближаются по своим физическим свойствам к соответствующим алканам. Так, только низшие спирты – метиловый, этиловый, изопропиловый и третичный бутиловый – смешиваются с водой в любых соотношениях, а, например, н-гексанол растворяет лишь 0.6% воды.

Температуры кипения спиртов

Спирт Температура кипения, °С
СН3ОН 64,5
С2Н5ОН 78,3
н3Н7ОН 97,8
н4Н9ОН 117,7
н10Н21ОН 231,0

Спирты нормального строения кипят выше, чем спирты с разветвленной цепью. При одинаковом числе углеродных атомов первичные спирты кипят при более высокой температуре, чем вторичные, а вторичные спирты – при более высокой, чем третичные. Температуры плавления, наоборот, выше у третичных спиртов. Плотность спиртов меньше 1.

Химические свойства спиртов

В молекуле спирта можно выделить три реакционных центра

1) О-Н-связь: обладает выраженной полярностью вследствие высокой электроотрицательности кислорода по сравнению с водородом, реакции с разрывом О-Н-связи определяют кислотность спирта;

2) неподеленная электронная пара атома кислорода определяет основность и нуклеофильность спирта;

3) С-О-связь: также обладает полярностью из-за различия электроотрицательности кислорода и углерода, разрыв С-О-связи характерен для реакций нуклеофильного замещения и β-элиминирования

В соответствии с перечисленными реакционными центрами для спиртов можно выделить следующие реакции:

2. Нуклеофильное замещение гидроксильной группы

Читайте также:  При наложении гастростомы по способу штамма кадера формируется свищ

3. Дегидратация спиртов

4. Окисление спиртов.

1. Кислотные и основные свойства спиртов. Спирты способны проявлять себя как кислоты и как основания. Константа диссоциации этанола Ка (рКа=10 -16 ) в 10 10 раз выше, чем Ка ацетилена (рКа=10 -26 ).

В силу своих кислотных свойств спирты легко взаимодействуют со щелочными металлами, образуя соли (алкоголяты):

Кислотность спиртов определяется строением алкильного радикала. Так, кислотность в ряду низших спиртов меняется следующим образом:

Наименьшую кислотность имеет трет-бутиловый спирт, так как соответствующий алкоксид-анион наименее устойчив из-за электронодонорного влияния метильных групп:

Основные свойства спиртов проявляются по отношению к протонным и апротонным кислотам. Донором электронов в молекуле спирта является атом кислорода:

Источник

Лабораторные способы получения этилового спирта

К наиболее часто используемым химическим способам получения спиртов относятся:

1.Гидратация алкенов (промышленный способ получения этанола для технических целей)

(t, Р, кислая среда (катализатор))

2.Щелочной гидролиз галогеналканов (лабораторный способ получения)

(водный раствор щелочи, t)

3.Восстановление альдегидов и кетонов (лабораторный способ получения)

(t, катализатор –Ni)

Особые способы получения метанола и этанола

1.Получение метанола из синтез-газа (водяной газ, генераторный газ)

(t, Р, оксидные катализаторы)

2.Получение этанола ферментативным брожением глюкозы (получение этилового спирта для пищевых и медицинских целей)

1. Гидратация алкенов

Гидратация алкенов используется в промышленности для получения спиртов из продуктов нефтепереработки.

Присоединение воды к алкенам происходит в присутствии разбавленной серной или фосфорной кислот. Эта реакция протекает в соответствии с правилом Марковникова, поэтому первичный спирт можно получить только из этилена, а остальные алкены дают вторичные или третичные спирты:

Этот метод в лабораторных условиях нашел ограниченную область применения для получения третичных спиртов.

2. Гид­ро­лиз га­ло­ге­нал­ка­нов в вод­но­м рас­тво­ре ще­ло­чи

В лабораторных условиях спирты получают действием водного раствора щелочи на алкилгалогениды при нагревании, при этом атом галогена в галогеналкане замещается группой –ОН:

С помощью этой реакции можно получать первичные, вторичные и третичные спирты.

При действии спиртового раствора щелочи на галогеналканы происходит отщепление галогеноводорода и образование алкена.

3. Восстановление карбонильных соединений (альдегидов и кетонов)

Дегидрирование спиртов по своей химической сущности является окислением. Обратная реакция – гидрирование альдегидов, кетонов и эфиров карбоновых кислот – является, таким образом, их восстановлением.

Читайте также:  Способы весело провести время с другом

При действии водорода в присутствии катализаторов (Ni, Pt, Pd) альдегиды восстанавливаются до первичных спиртов, а кетоны – до вторичных спиртов:

4. Восстановление эфиров карбоновых кислот

Гидрирование сложных эфиров проходит через стадию образования альдегидов:

Этим методом в промышленности из метиловых эфиров высших кислот получают высшие первичные спирты, например:

5. Гидролиз сложных эфиров карбоновых кислот в щелочной среде

Гидролиз сложных эфиров карбоновых кислот протекает как в кислой, так и в щелочной среде (водные или спиртовые растворы NaOH, КОН, а также Ba (OH)2, Ca (OH)2, Ba (OH)2, Ca (OH)2). Однако к образованию спиртов приводит гидролиз, протекающий необратимо в щелочной среде:

6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений

Спирты образуются при многочисленных реакциях металлоорганических соединений с различными соединениями, содержащими карбонильную группу >С=О. Этим способом можно получать как первичные спирты, так и вторичные и третичные:

7. Окисление алканов

При мягком окислении метана кислородом воздуха в присутствии различных катализаторов образуются метанол, формальдегид или муравьиная кислота:

Специфические способы получения метанола и этанола

Производство метанола крупнотоннажное, т.к. метиловый спирт является исходным веществом для получения других продуктов органического синтеза.

В промышленности

1. Получение метанола из синтез-газа (водяной газ, генераторный газ)

а) Конверсия природного газа в синтез-газ

Его получают из метана с перегретым водяным паром:

б) Каталитический синтез метанола из оксида углерода (II) и водорода

В качестве катализаторов используют смесь оксидов цинка, меди и хрома, температуру поддерживают в интервале 200-300 о С, а давление – от 40 до 150 атм.

Газ на выходе из реактора содержит 3-5% CH3OH, затем газ охлаждают и конденсируют полученный метанол, а оставшийся газ смешивают с исходным газом и направляют снова в реактор.

Ранее метанол получали сухой перегонкой древесины без доступа воздуха (отсюда его название «древесный спирт»).

2. Получение этанола спиртовым брожением глюкозы

Ферментативный гидролиз крахмала – наиболее древний синтетический процесс, используемый человеком – до сих пор имеет огромное значение для получения этилового спирта.

Про­те­ка­ет толь­ко в при­сут­ствии фер­мен­тов, ко­то­рые вы­ра­ба­ты­ва­ют неко­то­рые мик­ро­ор­га­низ­мы, на­при­мер, дрож­жи:

Глю­ко­за со­дер­жит­ся во фрук­то­вых соках. Глю­ко­зу можно по­лу­чить гид­ро­ли­зом крах­ма­ла (зерно, кар­то­фе­ль, цел­лю­лоз­ные опи­лки):

Источник

Оцените статью
Разные способы