Лабораторные способы определения грунта

Методы определения механических свойств грунтов

От характеристик грунтов зависит надежность и безопасность возводимых строений. Комплекс работ, направленный на изучение инженерно-геодезических параметров участка, нередко включает в себя дополнительные изыскания. При подготовке строительных проектов необходимо определить механические свойства грунтов для того, чтобы подобрать наиболее подходящие стройматериалы и выявить особенности при выполнении работ. Инженерно-геотехнические работы проводятся компаниями, которые имеют соответствующую лицензию и необходимую технику.

Какие существуют виды свойств

Свойства грунтов по разным критериям могут определяться двумя способами, которые позволяют получить наиболее достоверные результаты в достаточно короткие сроки. Основными видами свойств грунтов выступают:

  • Физические.
  • Механические.
  • Водные.
  • Химические и другие.

Каждое свойство необходимо для проведения разных работ на участке, но все они дают точное представление о характеристиках грунта. Исследование физических и механических свойств грунтов чаще всего производится при проведении инженерно-геодезических исследований.

Что входит в понятие «механические свойства»

Механические свойства грунтов включают в себя несколько параметров:

  1. Упругость.
  2. Разрыхляемость.
  3. Прочность.
  4. Просадочность.
  5. Сжимаемость.

Характеристики позволяют выяснить какие нагрузки сможет выдерживать почва. Данные параметры необходимы при закладке фундамента, возведении несущих конструкций и при проектировании всех элементов, которые будут соприкасаться с грунтом. Механические свойства являются исходными данными при прогнозировании изменений в состоянии почвы. Параметры позволяют предвидеть геологические процессы, которые происходят близко к поверхности грунта.

Методы определения механических свойств

Существует два способа определения свойств грунтов — полевой и лабораторный. Хоть лабораторная методика позволяет воссоздать различные природные условия, но полевой способ дает гораздо лучшие результаты. Огромным плюсом лабораторного метода выступает возможность создание условий природных катаклизмов и увидеть как будет вести себя грунт. В обоих случаях при определении свойств используется большое количество разнообразного оборудования, позволяющего производить точные расчеты при любом составе почвы.

Лабораторный способ

Исследование грунтов в условиях лаборатории позволяет выявить множество физико-механических свойств. Преимущественно лабораторным методом определяется влажность, упругость, плотность, водопроницаемость, деформационные характеристики. Также при помощи аппаратов исследуются и другие механические свойства грунтов. Каждое исследование предполагает использование различных аппаратов. Некоторые механические свойства могут определяться совершенно по-разному при исследовании на различных аппаратах, поэтому компании, занимающиеся такими работами обязательно указывают на чем были проведены тестирования.

Полевые методы

В природных условиях исследование грунта позволяет получить наиболее точные показатели. В естественных условиях уже есть необходимая нагрузка на почву, благодаря чему нет необходимости дополнительно воссоздавать природную среду. Определение механических свойств почвы чаще всего выполняется двумя способами:

  1. Штамповые испытания. Используется для определения показателей деформации. Во время изыскания вырывается шурф, в который устанавливается дамп для проведения дальнейших испытаний. Изыскания проводят для слоя почвы, на который будет воздействовать в будущем строение. При помощи домкрата на штамп подают нагрузку. Дополнительная нагрузка дается только после того, как произошла консолидация.
  2. Зондирование. Зондирование разделяют на статическое и динамическое. Способ, как и штамповые изыскания, используется для определения параметров деформации. Так как исследования проводятся по-разному, то заменять их друг другом не допустимо. Зондирование проводится на гораздо большей глубине. Задавливание либо забивание конуса в грунт позволяет определить параметр сопротивления, благодаря чему определяются показатели деформации. При необходимости несколько скважин при штамповых испытаниях могут быть заменены зондированием.

При необходимости сотрудники компаний проводят опытно-фильтрационные работы, которые позволяют выявить водные свойства грунтов. Чаще всего эти изыскания относятся к характеристикам прочности. В зависимости от состава грунта под воздействием влаги он будет вести совершенно по-разному. Если подземные воды находятся на небольшой глубине, то для заказчика работ по определению механических свойств грунтов для выполнения строительных работ, данный параметр обязателен для исследования.

Источник

Лабораторные способы определения грунта

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 декабря 2014 г. N 2022-ст межгосударственный стандарт ГОСТ 12536-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

Читайте также:  Виды аудита кадрового делопроизводства по способу проведения проверки

6 ПЕРЕИЗДАНИЕ. Февраль 2019 г

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на дисперсные песчаные и глинистые грунты, а также устанавливает методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава, применяемые при лабораторных испытаниях грунтов в процессе инженерно-геологических изысканий для строительства.

Настоящий стандарт не распространяется на торфяные и скальные грунты.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 342-77 Реактивы. Натрий дифосфат 10-водный. Технические условия

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

ГОСТ 5180-2015 Грунты. Методы лабораторно го определения физических характеристик

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 8984-75 Силикагель-индикатор. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 12071-2000 Грунты. Отбор, упаковка, транспортирование и хранение образцов

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования

* В Российской Федерации действует ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт изменен (заменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 25100, а также следующие термины с соответствующими определениями:

3.1 глинистый грунт: Связный грунт, состоящий в основном из пылеватых и глинистых (не менее 3%) частиц, обладающий свойством пластичности ( 1%).

3.2 гранулометрический состав грунта: Процентное содержание первичных (т.е. не связанных в агрегаты) частиц различной крупности по фракциям, выраженное по отношению к их общей массе.

3.3 микроагрегатный состав: Это количественное содержание в грунте и первичных, и вторичных частиц (т.е. сцепленных в агрегаты) по фракциям, и выраженное в процентах по отношению к их общей массе.

3.4 грунт: Горные породы, почвы, техногенные образования, представляющие собой многокомпонентную и многообразную геологическую систему и являющиеся объектом инженерно-хозяйственной деятельности человека.

Примечание — Грунты могут служить:

— материалом оснований зданий и сооружений;

— средой для размещения в них сооружений;

— материалом самого сооружения.

3.5 дисперсный грунт: Грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или золовым путем и их отложения.

3.6 коэффициент кривизны: Показатель, характеризующий форму кривой гранулометрического состава.

3.7 крупнообломочный грунт: Несвязный минеральный грунт, в котором масса частиц размером крупнее 2 мм составляет более 50%.

3.8 кумулятивная кривая гранулометрического состава: Графическое изображение гранулометрического состава горной породы.

3.9 органическое вещество: Органические соединения, входящие в состав грунта.

3.10 органо-минеральный грунт: Грунт, содержащий от 3% до 50% (по массе) органического вещества.

3.11 песчаный грунт (песок): Несвязный минеральный грунт, в котором масса частиц размером 0,05-2 мм составляет более 50% и число пластичности 1%.

3.12 показатель максимальной неоднородности гранулометрического состава грунта: Мера неоднородности гранулометрического состава.

Читайте также:  Тер планировка грунта механизированным способом

3.13 степень неоднородности гранулометрического состава: Показатель неоднородности гранулометрического состава.

3.14 торфяной грунт (торф): Органический грунт, содержащий в своем составе 50% (по массе) и более органического вещества, представленного растительными остатками и гумусом.

3.15 фракция грунта: Размер частиц грунта в миллиметрах.

4 Основные нормативные положения

4.1 Общие положения

4.1.1 Гранулометрический (зерновой) состав грунта определяют по массовому содержанию в нем частиц различной крупности, выраженному в процентах по отношению к массе сухой пробы грунта, взятой для анализа.

4.1.2 Микроагрегатный состав грунта определяют по массовому содержанию в нем водостойких микроагрегатов различной крупности, выраженному в процентах, по отношению к массе сухой пробы грунта, взятой для анализа.

4.1.3 Отбор образцов грунта для определения гранулометрического (зернового) и микроагрегатного состава проводят по ГОСТ 12071.

4.1.4 Гигроскопическую влажность определяют по ГОСТ 5180.

4.1.5 Гранулометрический состав грунтов определяют методами, указанными в таблице 1.

Таблица 1 — Методы определения гранулометрического состава грунтов

Размер фракции грунта, мм

Разновидность метода определения

Песчаные, при выделении зерен песка крупностью

Источник

Лабораторные способы определения грунта

Методы лабораторного определения физических характеристик

Soils. Laboratory methods for determination of physical characteristics

____________________________________________________________________
Текст Сравнения ГОСТ 5180-84 с ГОСТ 5180-2015 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 1985-07-01

Постановлением Государственного комитета СССР по делам строительства от 24.10.84 N 177 дата введения установлена 01.07.85

ПЕРЕИЗДАНИЕ. Октябрь 2005 г.

Настоящий стандарт распространяется на грунты без жестких структурных связей и устанавливает методы лабораторного определения их физических характеристик — влажности и плотности при исследованиях грунтов для строительства.

Стандарт не распространяется на крупнообломочные грунты.

Основные термины, применяемые в настоящем стандарте, и их пояснения приведены в приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Отбор, упаковку, транспортирование и хранение образцов грунта ненарушенного сложения (монолитов) и нарушенного сложения следует производить в соответствии с ГОСТ 12071-2000.

1.2. Подготовка к испытаниям и определение плотности мерзлых грунтов должны проводиться в помещении с отрицательной температурой воздуха на не подвергавшихся оттаиванию образцах. Перед испытаниями образцы должны быть выдержаны при заданной отрицательной температуре не менее 6 ч.

1.3. Метод определения характеристики выбирают в зависимости от свойств грунта в соответствии с табл. 1.

Определяемая характеристика грунта

Раздел настоящего стандарта

Грунты (область применимости метода)

Влажность, в том числе гигроскопическая

Высушивание до постоянной массы

Мерзлые слоистой и сетчатой криогенной текстуры

Влажность границы текучести

Влажность границы раскатывания

Раскатывание в жгут

Легко поддающиеся вырезке или не сохраняющие свою форму без кольца, сыпучемерзлые и с массивной криогенной текстурой

Взвешивание в воде парафинированных образцов

Пылевато-глинистые немерзлые, склонные к крошению или трудно поддающиеся вырезке

Взвешивание в нейтральной жидкости

Плотность сухого грунта

Плотность частиц грунта

Пикнометрический с водой

Все грунты, кроме засоленных и набухающих

То же, с нейтральной жидкостью

Засоленные и набухающие

Метод двух пикнометров

1.4. Оборудование и материалы, необходимые для определения физических характеристик грунтов, приведены в приложении 2.

1.5. Физические характеристики следует определять не менее чем для двух параллельных проб, отбираемых из исследуемого образца грунта.

1.6. Значение характеристик вычисляют как среднеарифметическое из результатов параллельных определений. Разница между параллельными определениями не должна превышать значений, указанных в приложении 3. Если разница превышает допустимую, количество определений следует увеличить.

1.7. При обработке результатов испытаний плотность вычисляют с точностью до 0,01 г/см , влажность до 30% — с точностью до 0,1%, влажность 30% и выше — с точностью до 1%.

1.8. Погрешность измерения массы (взвешивания) не должна превышать:

1.9. Данные о месте отбора образцов грунтов и результаты определений их физических характеристик записывают в журналах, форма которых приведена в приложениях 4-10.

2. ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ ГРУНТА МЕТОДОМ ВЫСУШИВАНИЯ ДО ПОСТОЯННОЙ МАССЫ

2.1. Влажность грунта следует определять как отношение массы воды, удаленной из грунта высушиванием до постоянной массы, к массе высушенного грунта.

2.2. Подготовка к испытаниям

2.2.1. Пробу грунта для определения влажности отбирают массой 15-50 г, помещают в заранее высушенный, взвешенный и пронумерованный стаканчик и плотно закрывают крышкой.

Читайте также:  Способы очистки природных газов

2.2.2. Пробы грунта для определения гигроскопической влажности грунта массой 10-20 г отбирают способом квартования из грунта в воздушно-сухом состоянии растертого, просеянного сквозь сито с сеткой N 1 и выдержанного открытым не менее 2 ч при данной температуре и влажности воздуха.

2.3. Проведение испытаний

2.3.1. Пробу грунта в закрытом стаканчике взвешивают.

2.3.2. Стаканчик открывают и вместе с крышкой помещают в нагретый сушильный шкаф. Грунт высушивают до постоянной массы при температуре (105±2) °С. Загипсованные грунты высушивают при температуре (80±2) °С.

2.3.3. Песчаные грунты высушивают в течение 3 ч, а остальные — в течение 5 ч.

Последующие высушивания песчаных грунтов производят в течение 1 ч, остальных — в течение 2 ч.

2.3.4. Загипсованные грунты высушивают в течение 8 ч. Последующие высушивания производят в течение 2 ч.

2.3.5. После каждого высушивания грунт в стаканчике охлаждают в эксикаторе с хлористым кальцием до температуры помещения и взвешивают.

Высушивание проводят до получения разности масс грунта со стаканчиком при двух последующих взвешиваниях не более 0,02 г.

2.3.6. Если при повторном взвешивании грунта, содержащего органические вещества, наблюдается увеличение массы, то за результат взвешивания принимают наименьшую массу.

2.4. Обработка результатов

2.4.1. Влажность грунта , %, вычисляют по формуле

, (1)

где — масса пустого стаканчика с крышкой, г;

— масса влажного грунта со стаканчиком и крышкой, г;

— масса высушенного грунта со стаканчиком и крышкой, г.

Допускается выражать влажность грунта в долях единицы.

3. ОПРЕДЕЛЕНИЕ СУММАРНОЙ ВЛАЖНОСТИ МЕРЗЛОГО ГРУНТА

3.1. Подготовка к испытаниям

3.1.1. Образец мерзлого грунта со слоистой или сетчатой криогенной текстурой массой 1-3 кг (имеющий не менее трех ледяных и минеральных прослоек каждого направления) помещают в предварительно высушенную, взвешенную и пронумерованную тару. Допускается оттаивание образцов грунта в плотно завязанных полиэтиленовых пакетах во время транспортирования и хранения.

3.2. Проведение испытаний

3.2.1. Образец грунта в таре взвешивают, дают ему оттаять и доводят до однородного состояния, близкого к границе текучести для пылевато-глинистых грунтов, или полного водонасыщения для песчаных грунтов, перемешивая его металлическим шпателем и добавляя дистиллированную воду или осторожно сливая избыток воды после ее осветления.

3.2.2. Грунт в таре вновь взвешивают и отбирают из него пробы для определения влажности перемешанного грунта в соответствии с требованиями пп.2.3 и 2.4.

3.3. Обработка результатов

3.3.1. Суммарную влажность , %, мерзлого грунта вычисляют по формуле

, (2)

где — массы тары, г;

— масса образца грунта (с тарой), г;

— масса перемешанного грунта (с тарой), г;

— влажность перемешанного грунта, %.

4. ОПРЕДЕЛЕНИЕ ГРАНИЦЫ ТЕКУЧЕСТИ

4.1. Границу текучести следует определять как влажность приготовленной из исследуемого грунта пасты, при которой балансирный конус погружается под действием собственного веса за 5 с на глубину 10 мм.

4.2. Подготовка к испытаниям

4.2.1. Для определения границы текучести используют монолиты или образцы нарушенного сложения, для которых требуется сохранение природной влажности.

Для грунтов, содержащих органические вещества, границу текучести определяют сразу после вскрытия образца.

Для грунтов, не содержащих органических веществ, допускается использование образцов грунтов в воздушно-сухом состоянии.

4.2.2. Образец грунта природной влажности разминают шпателем в фарфоровой чашке или нарезают ножом в виде тонкой стружки (с добавкой дистиллированной воды, если это требуется), удалив из него растительные остатки крупнее 1 мм, отбирают из размельченного грунта методом квартования пробу массой около 300 г и протирают сквозь сито с сеткой N 1.

Пробу выдерживают в закрытом стеклянном сосуде не менее 2 ч.

4.2.3. Образец грунта в воздушно-сухом состоянии растирают в фарфоровой ступке или в растирочной машине, не допуская дробления частиц грунта и одновременно удаляя из него растительные остатки крупнее 1 мм, просеивают сквозь сито с сеткой № 1, увлажняют дистиллированной водой до состояния густой пасты, перемешивая шпателем, и выдерживают в закрытом стеклянном сосуде согласно п.4.2.2.

4.2.4. Для удаления избытка влаги из образцов илов производят обжатие грунтовой пасты, помещенной в хлопчатобумажную ткань между листами фильтровальной бумаги, под давлением (пресс, груз). Грунтовую пасту из илов не допускается выдерживать в закрытом стеклянном сосуде.

Источник

Оцените статью
Разные способы