Квадратные функции способы решения

Квадратичная функция. Парабола

Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют функцией в математике.

Если вы прочно закрепите общие знания о функции (способы задания, понятие графика) дальнейшее изучение других видов функций будет даваться значительно легче.

Что называют квадратичной функцией

Квадратичная функция — это функция вида

Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень, в которой стоит « x » — это « 2 », то перед нами квадратичная функция.

Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты « a », « b » и « с ».

Квадратичная функция Коэффициенты
y = 2x 2 − 7x + 9
  • a = 2
  • b = −7
  • с = 9
y = 3x 2 − 1
  • a = 3
  • b = 0
  • с = −1
y = −3x 2 + 2x
  • a = −3
  • b = 2
  • с = 0

Как построить график квадратичной функции

График квадратичной функции называют параболой.

Парабола выглядит следующим образом.

Также парабола может быть перевернутой.

Существует четкий алгоритм действий при построении графика квадратичной функции. Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

Построим график квадратичной функции « y = x 2 −7x + 10 ».

Если « a > 0 », то ветви направлены вверх.

Если « a », то ветви направлены вниз.

В нашей функции « a = 1 », это означает, что ветви параболы направлены вверх.

Координаты вершины параболы

Чтобы найти « x0 » (координата вершины по оси « Ox ») нужно использовать формулу:

Найдем « x0 » для нашей функции « y = x 2 −7x + 10 ».

x0 =

− (−7)
2 · 1

=

7
2

= 3,5

Теперь нам нужно найти « y0 » (координату вершины по оси « Oy »). Для этого нужно подставить найденное значение « x0 » в исходную функцию. Вспомнить, как найти значение функции можно в уроке «Как решать задачи на функцию» в подразделе «Как получить значение функции».

Выпишем полученные координаты вершины параболы.

(·) A (3,5; −2,25) — вершина параболы.

Отметим вершину параболы на системе координат. Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график относительно оси « Oy ».

Для начала давайте разберемся, что называют нулями функции.

Нули функции — это точки пересечения графика функции с осью « Ox » (осью абсцисс).

Наглядно нули функции на графике выглядят так:

Свое название нули функции получили из-за того, что у этих точек координата по оси « Oy » равна нулю.

Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо « y = 0 ».

Подставим в заданную функцию « y = x 2 −7x + 10 » вместо « y = 0 » и решим полученное квадратное уравнение относительно « x » .

0 = x 2 −7x + 10
x 2 −7x + 10 = 0
x1;2 =

7 ± √ 49 − 4 · 1 · 10
2 · 1

x1;2 =

7 ± √ 9
2

x1;2 =

7 ± 3
2

x1 =
7 + 3
2
x2 =
7 − 3
2
x1 =
10
2
x2 =
4
2
x1 = 5 x2 = 2

Мы получили два корня в уравнении, значит, у нас две точки пересечения с осью « Ox ». Назовем эти точки и выпишем их координаты.

Отметим полученные точки («нули функции») на системе координат.

Возьмем четыре произвольные числовые значения для « x ». Целесообразно брать целые числовые значения на оси « Ox », которые наиболее близки к оси симметрии. Числа запишем в таблицу в порядке возрастания.

Для каждого выбранного значения « x » рассчитаем « y ».

  • y(1) = 1 2 − 7 · 1 + 10 = 1 − 7 + 10 = 4
  • y(3) = 3 2 − 7 · 3 + 10 = 9 − 21 + 10 = −2
  • y(4) = 4 2 − 7 · 4 + 10 = 16 − 28 + 10 = −2
  • y(6) = 6 2 − 7 · 6 + 10 = 36 − 42 + 10 = 4
Читайте также:  Двигатели постоянного тока способы возбуждения двигателей постоянного тока

Запишем полученные результаты в таблицу.

x 1 3 4 6
y 4 −2 −2 4

Отметим полученные точки графика на системе координат (зеленые точки).

Теперь мы готовы построить график. На забудьте после построения подписать график функции.

Краткий пример построения параболы

Рассмотрим другой пример построения графика квадратичной функции. Только теперь запишем алгоритм построения коротко без подробностей.

Пусть требуется построить график функции « y = −3x 2 − 6x − 4 ».

    Направление ветвей параболы « a = −3 » — ветви параболы направлены вниз.

Координаты вершины параболы

x0 =

−b
2a

x0 =

−(−6)
2 · (−3)

=

6
−6

= −1

y0(−1) = (−3) · (−1) 2 − 6 · (−1) − 4 = −3 · 1 + 6 − 4 = −1

(·) A (−1; −1) — вершина параболы.

Точки пересечения с осью « Ox » ( y = 0 ).

−3x 2 − 6x − 4 = 0 |·(−1)

x1;2 =

−6 ± √ 6 2 − 4 · 3 · 4
2 · 1

x1;2 =

−6 ± √ 36 − 48
2

x1;2 =

−6 ± √ −12
2

Ответ: нет действительных корней.

Так как корней нет, значит, график функции не пересекает ось « Ox ».

Вспомогательные точки для: « x = −3 »; « x = −2 »; « x = 0 »; « x = 1 ». Подставим в исходную функцию « y = −3x 2 − 6x − 4 ».

  • y(−3) = −3 · (−3) 2 − 6 · (−3) − 4 = −3 · 9 + 18 − 4 = −27 + 14 = −13
  • y(−2) = −3 · (−2) 2 − 6 · (−2) − 4 = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4
  • y(0) = −3 · 0 2 − 6 · 0 − 4 = −4
  • y(1) = −3 · 1 2 − 6 · 1 − 4 = −3 −6 − 4 = −13
x −3 −2 0 1
y −13 −4 −4 −13

Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые не выходят за масштаб нашей системы координат, то есть точки « (−2; −4) » и « (0; −4) ». Построим и подпишем график функции.

Источник

Как построить параболу? Что такое парабола? Как решаются квадратные уравнения?

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1 ) Формула параболы y=ax 2 +bx+c,
если а>0 то ветви параболы направленны вверх,
а 2 +bx+c=0;

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x1=2
x2=-2

Читайте также:  Лучший способ выучить javascript

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Источник

Квадратичная функция (ЕГЭ 2022)

Проверь себя, ответь на эти вопросы:

  • Как выглядит квадратичная функция в общем виде (формула)?
  • Как называется график квадратичной функции?
  • Как влияет старший коэффициент на график квадратичной функции?
  • Как построить график квадратичной функции?
  • Какие есть варианты расположения графика?

В конце статьи ты будешь знать ответы на эти вопросы.

Квадратичная функция — коротко о главном

Квадратичная функция – функция вида \( y=a<^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) ­– любые числа (коэффициенты), \( c\) – свободный член.

График квадратичной функции – парабола.
Вершина параболы: \( \displaystyle <_<в>>=\frac<-b><2a>\).

Квадратичная функция вида: \( y=a<^<2>>\).

Чем больше значение \( \displaystyle a\) (по модулю), тем у́же становится парабола (ветви становятся более крутыми). И наоборот, чем меньше \( \displaystyle a\), тем парабола шире.

Варианты расположения параболы в зависимости от коэффициента \( \displaystyle a\) и дискриминанта \( \displaystyle D=<^<2>>-4ac\).

  1. Найти координаты вершины;
  2. Построить ось симметрии, проанализировать куда направлены ветви параболы;
  3. Найти точки пересечения параболы с осью \( \displaystyle Ox\) (нули), если они есть, решив уравнение \( \displaystyle 0=a<^<2>>+bx+c\);
  4. Найти точку пересечения с осью \( \displaystyle Oy\), решив уравнение \( \displaystyle y=a\cdot 0+b\cdot 0+c=c\).

Что такое функция?

Не знаешь? Тогда сперва прочитай тему «Функции» – она несложная, но очень важная.

А мы пока повторим.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).

Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции».

Все дело в понятии «область определения»:

Для некоторых функций не все аргументы можно подставить в зависимость.

Например, для функции \( y=\sqrt\) отрицательные значения аргумента \( x\) – недопустимы.

Кстати, а с линейной функцией ты уже дружишь? Про нее все написано в теме «Линейная функция» – там ты поймешь, что в функциях ничего страшного нет и научишься понимать и использовать коэффициенты (это циферки перед буквой \( x\)).

И еще, надеюсь, ты умеешь решать квадратные уравнения? Освежить память можно, почитав тему «Квадратные уравнения».

Квадратичная функция — подробнее

Квадратичная функция – это функция вида \( y=a<^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) ­– любые числа (они и называются коэффициентами).

Число \( a\) называют старшим или первым коэффициентом такой функции, \( b\) – вторым коэффициентом, а \( c\) – свободным членом.

Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений\( E\left( y \right)\).

Какими могут быть значения аргумента квадратичной функции \( y=a<^<2>>+bx+c\)? Правильно, любыми. Ведь в эту формулу можно подставить любое число (в отличии, например, от функции \( y=\frac<1>\) – в нее нельзя подставить \( x=0\)).

Значит, область определения – все действительные числа:

\( D\left( y \right)=\mathbb\) или \( D\left( y \right)=\left( -\infty ;+\infty \right)\).

А теперь множество значений. Все ли значения может принимать функция?

Достаточно рассмотреть самую простую квадратичную функцию \( y=<^<2>>\) \( \left( a=1,\text< >b=0,\text< >c=0 \right)

\), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.

Значит, эта функция всегда не меньше нуля.

А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.

Таким образом, можем написать для \( y=<^<2>>:E\left( y \right)=\left[ 0;+\infty \right)\).

В каждом отдельном случае область значений будет разная, но всегда – ограниченная.

График квадратичной функции

Наверняка ты слышал, что график квадратичной функции называется параболой. Как она выглядит? Сейчас нарисуем

Кстати мы очень подробно разобрали как быстро и правильно рисовать параболу. Переходи по ссылке и всему научишься.

Начнем с простейшей квадратичной функции – \( y=<^<2>>\).

Составим таблицу значений:

x -2 -1 0 1 2
y 4 1 0 1 4

Нарисуем эти точки на координатной плоскости и соединим их плавной линией:

Именно так и выглядит парабола. Самая нижняя ее точка называется вершиной, а части спарва и слева от вершины называем ветвями параболы. Как видим, ветви симметричны относительно вертикали, проходящей через вершину.

Рассмотрим теперь другую функцию: \( y=<^<2>>-2-3\).

Составим таблицу значений:

x -2 -1 0 1 2 3 4
y 5 0 -3 -4 -3 0 5

Сравним два рисунка.

Видно, что это как будто одна и та же парабола, просто расположенная в разных местах.

Во второй параболе вершина переместилась в точку \( \left( 1;-4 \right)\), а ветви переехали вместе с ней.

Да, так оно и есть: все параболы с одинаковым старшим коэффициентом, a выглядят одинаково – даже при разных остальных коэффициентах.

Кстати, если хочешь научиться быстро и правильно рисовать график квадратичной функции, то переходи по ссылке, там отличная статья.

Коэффициенты квадратичной функции

Давай разберем, на что влияют коэффициенты квадратичной функции.
Начнем со старшего коэффициента.
Будем рассматривать функции вида \( y=a<^<2>>\) (\( b=0\), \( c=0\) – пусть не мешают).

Построим на одном рисунке графики нескольких функций: при \( a= -2,\text< >-1,\frac<1><2>,\text< >1,\text< >3:\)

Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?

Во-первых, это невозможно не заметить, если \( \displaystyle \mathbf \mathbf<0>\) – вверх.

Значит, если парабола пересекает ось \( \displaystyle Ox\) в двух точках, то у нас два корня квадратного уравнения.

Если не пересекает – корней нет.

Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси \( \displaystyle Ox\) вершиной:

А что такое вершина параболы?

Вершина параболы

Корень уравнения в этом случае указывает на вершину параболы. Если вспомнить формулу корня квадратного уравнения при \( \displaystyle D=0\), получим формулу вершины:

Это тоже бывает очень полезно.

Итак, всего возможны шесть разных вариантов расположения параболы. Вот они все на одном рисунке:

А теперь порешаем задачки.

Решение задач

1. График какой из функций избражен на рисунке?

2. Найдите сумму корней квадратного уравнения \( a<^<2>>+bx+c=0\), если на рисунке приведен график функции \( y=a<^<2>>+bx+c\):

3. Найдите произведение корней квадратного уравнения \( a<^<2>>+bx+c=0\), если на рисунке приведен график функции \( y=a<^<2>>+bx+c\):

4. По графику функции \( y=<^<2>>+bx+c\) определите коэффициенты \( b\) и \( c\):

Решения

1. Первое: куда «смотрят» ветви параболы? Вниз. А что это значит? Правильно, \( \displaystyle a

Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)

Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?

Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?

Можно! И на этом уроке мы научимся производить такие трансформации.

Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.

Источник

Оцените статью
Разные способы