Квадратное неравенство решение графическим способом

Квадратным неравенством называют неравенство вида

αx 2 + bх + c > 0, где а ≠ 0

Разберем графический способ решения квадратных неравенств

Графический способ

Графический способ – это один из самых простых методов решения неравенств. Суть графического способа решения неравенств следующая: рассматривают функцию y = f(x), строят её график в Декартовой системе координат и выясняют, на каких промежутках график расположен выше нуля, а на каких ниже. Те промежутки, на которых

  • график функции f выше 0 являются решениями неравенства f(x) > 0;
  • график функции f не ниже 0 являются решениями неравенства f(x) ≥ 0;
  • график функции f ниже 0 являются решениями неравенства f(x) 2 + bx + c , ≥)

Графиком левой части неравенства является парабола. Дальше, согласно графическому способу решения неравенств, надо проанализировать, на каких промежутках график одной функции расположен выше или ниже оси Ох, что позволит записать искомое решение квадратного неравенства.

В зависимости от значений коэффициентов a, b и c возможны следующие шесть вариантов (для наших нужд достаточно схематического изображения, и можно не изображать ось Oy, так как ее положение не влияет на решения неравенства):

Вариант 1:

На этом чертеже мы видим параболу, ветви которой направлены вверх, и которая пересекает ось Ox в двух точках (x1 и x2). Этот чертеж отвечает варианту, когда коэффициент α – положительный (он отвечает за направленность вверх ветвей параболы), и когда положительно значение дискриминанта квадратного трехчлена αx 2 + bx + c (при этом трехчлен имеет два корня, которые мы обозначили как x1 и x2).

Давайте для наглядности изобразим красным цветом части параболы, расположенные выше оси абсцисс, а синим цветом – расположенные ниже оси абсцисс и выясним, какие промежутки этим частям соответствуют. Определить их поможет следующий чертеж (в дальнейшем подобные выделения в форме прямоугольников будем проводить мысленно):

  • Так на оси абсцисс оказались подсвечены красным цветом два промежутка(−∞, x1) и (x2, +∞), на них парабола выше оси Ox, они составляют решение квадратного неравенства αx 2 + bx + c > 0.
  • Синим цветом подсвечен промежуток (x1, x2), на нем парабола ниже оси Ox, он представляет собой решение неравенства αx 2 + bx + c 2 + bx + c≥0 и αx 2 + bx + c ≤ 0 будут те же промежутки, но в них следует включить корни x1 и x2, отвечающие равенству αx 2 + bx + c=0.
Вариант 2:

Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x0. Представленному случаю отвечает α > 0 (ветви направлены вверх) и D =0 (квадратный трехчлен имеет один корень x0). Для примера можно взять квадратичную функцию y= x 2 − 4x + 4, здесь

α = 1 > 0, D = (−4)2 − 4•1•4 = 0 и x0 = 2.

По графику отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x0), (x0, ∞). Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

Делаем выводы: при α > 0 и D = 0

Решением квадратного неравенства

Делаем выводы: при a>0 и D=0

  • Решением квадратного неравенства αx 2 + bx + c > 0 является(−∞, x0)∪(x0, +∞) или в другой записи x ≠ x0;
  • Решением квадратного неравенства αx 2 + bx + c ≥ 0 является (−∞, +∞) или в другой записи x ∈ R;
  • Квадратное неравенство αx 2 + bx + c 2 + bx + c ≤ 0 имеет единственное решение x = x0 (его дает точка касания), где x0 — корень квадратного трехчлена αx 2 + bx + c > 0 является (−∞, x0)∪(x0, +∞) или в другой записи x ≠ x0;
Вариант 3:

В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия α > 0 (ветви направлены вверх) и D 2 + 1, здесь α = 2 > 0,

D = 0 2 − 4•2•1 = −8 0 и D 2 + bx + c > 0 и αx 2 + bx + c ≥ 0 является множество всех действительных чисел, а неравенства αx 2 + bx + c 2 + bx + c ≤ 0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox. В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x2.

Пример:

а) x 2 — 2x — 3 > 0

б) x 2 — 2x — 3 2 — 2x — 3 ≥ 0

г) x 2 — 2x — 3 ≤ 0

Решение:

рис 1.

Рассмотрим параболу y = x 2 — 2x — 3 на рисунке 1.

а) Решить неравенство x 2 — 2x — 3 > 0 — это значит ответить на вопрос, при каких значениях xординаты точек параболы положительны. Замечаем, что y > 0, т. е. график функции расположен выше оси x, при x 3. Значит, решением неравенства служат все точки открытого луча (-∞; -1), а так же все точки открытого луча (3; +∞).

Используя знак «U», ответ можно записать так: (-∞; -1)υ(3; +∞). Впрочем, ответ можно записать и так:

б) Неравенство x 2 — 2x — 3 2 — 2x — 3, также можно решить с помощью рис. 1: график расположен ниже оси x, если -1 2 — 2x — 3 ≥ 0 отличается от неравенства x 2 — 2x — 3 > 0 тем, что в ответ надо включить и корни уравнения x 2 — 2x — 3 = 0, т.е. точки x = -1 и x = 3. Таким образом, решениями данного неравенства являются все точки луча (-∞; -1], а также все точки луча [3; +∞).

г) Неравенство x 2 — 2x — 3 ≤ 0 отличается от неравенства x 2 — 2x — 3 2 — 2x — 3 = 0, т.е. x = -1 и x = 3. Следовательно, решениями данного неравенства служат все точки отрезка [-1; 3].

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом:

  • На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y = αx 2 + bx + c . Для построения эскиза параболы достаточно выяснить два момента:
  • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a 2 + bx + c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D > 0), касается ее в одной точке (при D = 0), или не имеет общих точек с осью Ox (при D 0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
  • При решении неравенства αx 2 + bx + c ≥ 0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
  • При решении неравенства αx 2 + bx + c 2 + bx + c ≤ 0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания); они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Источник

Решение квадратных неравенств графически.

Один из самых удобных методов решения квадратных неравенств – это графический метод. В этой статье мы разберем, как решаются квадратные неравенства графическим способом. Сначала обсудим, в чем суть этого способа. А дальше приведем алгоритм и рассмотрим примеры решения квадратных неравенств графическим способом.

Навигация по странице.

Суть графического способа

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов. Суть графического способа решения неравенств следующая: рассматривают функции y=f(x) и y=g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого. Те промежутки, на которых

  • график функции f выше графика функции g являются решениями неравенства f(x)>g(x) ;
  • график функции f не ниже графика функции g являются решениями неравенства f(x)≥g(x) ;
  • график функции f ниже графика функции g являются решениями неравенства f(x) ;
  • график функции f не выше графика функции g являются решениями неравенства f(x)≤g(x) .

Также скажем, что абсциссы точек пересечения графиков функций f и g являются решениями уравнения f(x)=g(x) .

Перенесем эти результаты на наш случай – для решения квадратного неравенства a·x 2 +b·x+c (≤, >, ≥).

Вводим две функции: первая y=a·x 2 +b·x+c (при этом f(x)=a·x 2 +b·x+c) отвечает левой части квадратного неравенства, вторая y=0 (при этом g(x)=0 ) отвечает правой части неравенства. Графиком квадратичной функции f является парабола, а графиком постоянной функции g – прямая, совпадающая с осью абсцисс Ox .

Дальше согласно графическому способу решения неравенств надо проанализировать, на каких промежутках график одной функции расположен выше или ниже другого, что позволит записать искомое решение квадратного неравенства. В нашем случае нужно проанализировать положение параболы относительно оси Ox .

В зависимости от значений коэффициентов a , b и c возможны следующие шесть вариантов (для наших нужд достаточно схематического изображения, и можно не изображать ось Oy , так как ее положение не влияет на решения неравенства):


На этом чертеже мы видим параболу, ветви которой направлены вверх, и которая пересекает ось Ox в двух точках, абсциссы которых есть x1 и x2 . Этот чертеж отвечает варианту, когда коэффициент a – положительный (он отвечает за направленность вверх ветвей параболы), и когда положительно значение дискриминанта квадратного трехчлена a·x 2 +b·x+c (при этом трехчлен имеет два корня, которые мы обозначили как x1 и x2 , причем приняли, что x1 , так как на оси Ox изобразили точку с абсциссой x1 левее точки с абсциссой x2 ). Если хочется конкретики, то постройте параболу y=x 2 −x−6 , ее коэффициент a=1>0 , D=b 2 −4·a·c=(−1) 2 −4·1·(−6)=25>0 , x1=−2 , x2=3 .

Давайте для наглядности изобразим красным цветом части параболы, расположенные выше оси абсцисс, а синим цветом – расположенные ниже оси абсцисс.

Теперь выясним, какие промежутки этим частям соответствуют. Определить их поможет следующий чертеж (в дальнейшем подобные выделения в форме прямоугольников будем проводить мысленно):

Так на оси абсцисс оказались подсвечены красным цветом два промежутка (−∞, x1) и (x2, +∞) , на них парабола выше оси Ox , они составляют решение квадратного неравенства a·x 2 +b·x+c>0 , а синим цветом подсвечен промежуток (x1, x2) , на нем парабола ниже оси Ox , он представляет собой решение неравенства a·x 2 +b·x+c . Решениями нестрогих квадратных неравенств a·x 2 +b·x+c≥0 и a·x 2 +b·x+c≤0 будут те же промежутки, но в них следует включить числа x1 и x2 , отвечающие равенству a·x 2 +b·x+c=0 .

А теперь кратко: при a>0 и D=b 2 −4·a·c>0 (или D’=D/4>0 при четном коэффициенте b )

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x1)∪(x2, +∞) или в другой записи x , x>x2 ;
  • решением квадратного неравенства a·x2+b·x+c≥0 является (−∞, x1]∪[x2, +∞) или в другой записи x≤x1 , x≥x2 ;
  • решением квадратного неравенства a·x 2 +b·x+c является (x1, x2) или в другой записи x1 ;
  • решением квадратного неравенства a·x 2 +b·x+c≤0 является [x1, x2] или в другой записи x1≤x≤x2 ,

где x1 и x2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x1 .


Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x0=2 .

По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x0) , (x0, ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

Делаем выводы: при a>0 и D=0

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x0)∪(x0, +∞) или в другой записи x≠x0 ;
  • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
  • квадратное неравенство a·x 2 +b·x+c не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
  • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x0 (его дает точка касания),

где x0 — корень квадратного трехчлена a·x 2 +b·x+c .


В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8 .

Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

Таким образом, при a>0 и D решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.


При a и D>0

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (x1, x2) или в другой записи x1 ;
  • решением квадратного неравенства a·x 2 +b·x+c≥0 является [x1, x2] или в другой записи x1≤x≤x2 ;
  • решением квадратного неравенства a·x 2 +b·x+c является (−∞, x1)∪(x2, +∞) или в другой записи x , x>x2 ;
  • решением квадратного неравенства a·x 2 +b·x+c≤0 является (−∞, x1]∪[x2, +∞) или в другой записи x≤x1, x≥x2 ,

где x1 и x2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x1 .


При a и D=0

  • квадратное неравенство a·x 2 +b·x+c>0 не имеет решений;
  • квадратное неравенство a·x 2 +b·x+c≥0 имеет единственное решение x=x0 ;
  • решением неравенства a·x 2 +b·x+c является (−∞, x0)∪(x0, +∞) или в другой записи x≠x0 ;
  • решением квадратного неравенства a·x 2 +b·x+c≤0 является множество всех действительных чисел (−∞, +∞) или в другой записи x∈R ,

где x0 — корень квадратного трехчлена a·x 2 +b·x+c .


При a и D квадратные неравенства a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 не имеют решений, а решением неравенств a·x 2 +b·x+c и a·x 2 +b·x+c≤0 является множество всех действительных чисел.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом:

На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

  • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a – вниз).
  • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.

Когда чертеж готов, по нему на втором шаге алгоритма

  • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
  • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
  • при решении неравенства a·x 2 +b·x+c находятся промежутки, на которых парабола ниже оси Ox ;
  • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Источник

Читайте также:  Поиск работы этапы способы приемы реферат
Оцените статью
Разные способы