Круговые кривые способы разбивки круговых кривых

Детальная разбивка круговых кривых

Детальная разбивка переходных и круговых кривых выполняется в период строительства после выноса на трассу трех основных точек кривой НК, СК, КК. Детальная разбивка производится через 5 м при радиусах кривых менее 100 м, через 10 м при радиусах кривых менее 500 м и через 20 м – более 500 м. Для детальной разбивки кривых наиболее часто используется способ прямоугольных координат (рис. 3).

Рис. 3 Способ прямоугольных координат

За начало координат принимают точку НК – начала круговой кривой, ось X располагают по тангенсу кривой в направлении ВУ, ось У направлена по радиусу к центру круговой кривой О.

Выбирают интервал разбивки К и для этого значения рассчитывают угол φ = (К/R)ρ, по которому определяют значения прямоугольных координат х и у для детальной разбивки.

Вдоль тангенсов (ось абсцисс) откладывают длины х, восстанавливают прямой угол в полученной точке. Точка 1 круговой кривой фиксируется расстоянием у, отмеренным по перпендикуляру. Так же и получают другие точки круговой кривой. Вторую половину круговой кривой разбивают от ее конца, выполняя аналогичные действия и используя значения х и у, по­лученные для первой половины. Как видно из геометрии способа, для его реализации требуется свободное пространство. Достоинство способа прямоугольных координат состоит в том, что каждая точка кривой выносится независимо от других с примерно одинаковой точностью.

Если участок трассы расположен в закрытой местности, то удобнее использовать способ продолженных хорд (рис. 4).

Рис. 4 Способ продолженных хорд

В этом способе первая точка выносится по способу прямоугольных координат. Затем хорда продолжается на ее же длину s, и получается вспомогательная точка 2′. На базе 12′ при помощи линейной засечки расстояниями s и d =s2/R получается точка 2 круговой кривой. Вновь продолжают хорду, но уже от точки 2. вдоль отрезка 21. Из точек 23′ повторяют линейную засечку отрезками s и d, получая точку 3 и т.д.

В некоторых случаях при трассировании объектов возникает необходимость выноса пикета на круговую кривую.

Вынос осуществляется методом прямоугольных координат (рис. 5)

Вначале вычисляется значение К – интервала круговой кривой между пикетом и началом круговой кривой.

Зная К можно получить угол φ

Используя значение φ получим координаты x и y

Источник

Способы детальной разбивки закруглений

Схема круговой кривой

Для расчета закругления на местности теодолита измеряют угол β, для того чтобы вычислить угол поворота трассы φ=180º–β (φ–угол между первоначальным и последующим направлением трассы)

Читайте также:  Тоффи салат способ приготовления

Радиус закругления R выбирают в соответствии с условиями техники безопасности эксплуатации сооружения и рельефа. По φ и R вычисляют основные элементы круговой кривой.

Тангенс (Т) – расстояние от вершины угла (ВУ) до начало кривой (НК) или конца кривой (КК):

Кривая (К) – длина дуги окружности с радиусом R от НК до КК:

Биссектриса (Б) – расстояние от ВУ до середины кривой (СК):

Б

Домер (Д) – разность путей по ломаной линии и дуге:

За концом кривой все пикеты смещаются вперед на Д.

Для того чтобы разбить круговую кривую на местности достаточно закрепить ее основные точки: начало, середину и конец.

Для того чтобы закрепить НК и КК от ВУ по оси трассы откладывают Т. Для того чтобы закрепить СК, при помощи теодолита откладывают угол β/2 и в этом направлении откладывают Б.

Пикетажное значение НК и КК вычисляют по формулам:

Контроль: КК=ВУ+Т–Д

При больших R не достаточно только закрепить НК, СК, КК. В этом случае пользуются детальной разбивкой круговой кривой, которая выполняется, например, способом прямоугольных координат, продолженных хорд и т.д.

Дальше приступают к нивелированию трассы, которое начинают с привязки трассы к реперу ГВС. Привязка заключается в проложении нивелирного хода о репера до начала трассы (ПК0). Далее нивелируют пикеты, «плюсовые» точки, поперечники, главные точки кривых. Нивелирование выполняется геометрическим способом «из середины», причем пикеты нивелируют как связующие точки (по двум сторонам реек), а остальные как промежуточные (по черной стороне). Заканчивается нивелирование привязкой трассы к реперу высотной сети.

Способ прямоугольных координат является наиболее точным и простым; он применяется в открытой равнинной местности. В этом способе положение точек на кривой через равные промежутки k определяется прямоугольными координатами х и y; за ось абсцисс принимают линию тангенса (касательной), а за начало координат — начало (НК) или конец кривой (КК).

Для вычисления координат х, у точек детальной разбивки предварительно вычисляют центральный угол θ, соответствую­щий заданной дуге k,

Далее, решая прямоугольный треугольник ОС1, получают:

или

Аналогичным образом вычисляют координаты последующих точек, расположенных на первой половине кривой, через расстояние k по дуге кривой:

Определение положения точек 1, 2, 3, кривой на местности сводится к откладыванию рулеткой от НК (или КК) по на­правлению тангенса отрезков х1, х2, х3 построению при помощи эккера (теодолита) перпендикуляров из концов этих от­резков и откладыванию по ним отрезков у1, у2, у3

Разбивку ведут от начала кривой (НК) до середины, а за­тем от конца кривой (КК) также до середины кривой (СК). Обе половины кривой должны сомкнуться в точке СК, что контролирует точность детальной разбивки. Достоинством данного способа является то, что положение каждой точки кривой опре­деляется независимыми промерами и при переходе от одной точки к другой погрешности не накапливаются.

Читайте также:  Способы диагностики проблемной ситуации

Полярный способ (способ углов) целесообразно применять на косогорах, насыпях и в полузакрытой равнинной местности. Способ базируется на положении геометрии о том, что угол с вершиной в какой-либо точке кривой, образованный касательной и секущей, равен половине соответствующего центрального угла. Как видно из рисунка, хорда . Отсюда .

Положение точек кривой на местности определяют линейно-угловыми засечками. Для этого теодолит устанавливают в точке НК (или КК) и от направления тангенса откладывают последовательно углы и т. д. Отложив рулеткой по направлению первого визирного луча отрезок l, закрепляют на местности точку 1. Из точки1 протягивают рулетку до пересечения отрезка l со вторым визирным лучом и закрепляют точку 2 и т. д.

Недостатком способа является снижение точности детальной разбивки с увеличением числа точек, так как положение каждой последующей точки находится относительно предыдущей.

Способ продолженных хорд применяют при разбивке кривых на застроенных и залесенных участках, в выемках и тон­нелях.

Разбивку кривой ведут с помощью мерной ленты и рулетки. По радиусу кривой R и принятой длине хорды l вычисляют длину отрезка d, называемого промежуточным перемещением.

Значение величины d находят из подобия треугольников 0—1—2 и 1—2—2′:

отсюда

Положение первой точки кривой находят способом прямоугольных координат; при этом значения координат х1 и у1 вычисляют по формулам (1) и (2). Закрепив на местности точку 1, на продолжении створа линии НК-1 откладывают длину хорды l и отмечают временную точку 2′. Затем находят положение точки 2 на кривой линейной засечкой отрезками I из точки 1 и d из точки 2». Положение остальных точек детальной разбивки до середины кривой находится аналогичным образом.

Данный способ имеет тот же недостаток, что и полярный способ.

Источник

ДЕТАЛЬНАЯ РАЗБИВКА КРУГОВЫХ КРИВЫХ

Детальная разбивка кривой предусматривает не только закреп-ление на местности начала НК, конца КК и середины СК кривой, но и обозначение всей кривой, например, колышками через определен-ный интервал. Существует ряд способов разбивки круговых кривых: способ прямоугольных координат, способ углов, способ продолжен-ных хорд.

Способ прямоугольных координат (ординат от тангенса).

Пусть необходимо обозначить на мест-ности точки 1, 2, 3 и т.д. через определен-ный интервал, равный длине дуги К. Если принять ус-ловную систему коор-динат Х-НК-У, то по-ложение каждой точ-ки определится пря-моугольными коор-динатами:
Читайте также:  Обработка гнойной раны перед операцией проводится каким способом

НК
O
R
R
У
Х

В эти формулы подставляют значение угла j1, зависящее от величины интервала К, которое можно найти из выражения:

j1= .

На местности откладывают от начала кривой НК по направ-лению на вершину угла поворота ВУ (по направлению тангенса) абсциссы Хi , а по перпендикулярному направлению ординаты Уi и закрепляют точки 1, 2, 3 и т.д. Так производят разбивку до середины кривой. Другую половину кривой разбивают с ее конца. Для определения координат Х и У существуют специальные таблицы.

Этот способ применяется на ровной площадке и является наиболее точным, так как точки 1, 2, 3 и т.д. выносят независимо друг от друга, поэтому ошибка положения одной точки не окажет влияния на положение других точек, чего нельзя сказать о рассмат-риваемых далее способах углов и продолженных хорд .

Способ углов (полярный способ).

Теодолит устанавливают в точке НК и приводят его в рабочее положение. Зритель-ную трубу ориентируют по направлению на ВУ так, чтобы отсчет на лимбе был равен 0°00’ и лимб закрепляют. Откладывают на лимбе угол j1/2 и закрепляют на рас-стоянии S точку 1 так, чтобы она попала в перекрестие сет-ки нитей. Далее откладывают угол 2j1/2 и на расстоянии S от точки 1 закрепляют точку 2 и т.д.
О
НК
R
R

Этот способ удобно применять в стесненных условиях, когда есть видимость между НК и точками 1, 2, 3. (например, на высокой насыпи, где способ прямоугольных координат неприемлем).

Угол j1 может быть найден по формуле (из решения заштрихованного треугольника), причем в этом способе S явля-ется хордой определенной длины.
НК

j1/2
R
О
R

Способ продолженных хорд

перемещение b и закрепля-ют точку 2 также на рас-стоянии S от точки 1. Далее в створе 1-2 на расстоянии S отмечают точку 3‘ и отрезками b и S засекают точку 3 и т.д. Ве-личина b = S 2 /R, что выте-кает из подобия треуголь-ников 1-2-О и 1-2-2 ’ . Часто для вынесения точки 1 принимают Х1 » S , а У1 » b/2.

Вначале по координатам Х1 и У1 выносят точку 1. Затем в створе НК-1 на расстоянии S от точки 1 отмечают вспомогательную точку 2’, от которой откладывают так называемое промежуточное

R
НК

R
О

Этим способом одну половину кривой разбивают с HK, а дру-гую половину — с конца кривой КК. Способ применим в любыхстес-ненных условиях, в том числе и в выемке, где первые два способа неприемлемы.

Недостатком способов углов и продолженных хорд является снижение точности разбивки кривой по мере возрастания ее длины, так как положение каждой последующей точки определяется относительно предыдущей.

Источник

Оцените статью
Разные способы