- Общие сведения о криптографии, шифровании информации
- Что изучает наука криптология
- Физическая защита
- Стенографическая защита
- Криптографическая защита
- Требования к криптографическим системам защиты информации
- Важные определения
- Правовые нормы
- Сферы применения криптографии
- История
- Исторические способы шифрования
- Вторая Мировая война и послевоенный период
- Современные методы засекречивания информации
- Для чего нужна криптография и как она работает: основные понятия
- Что такое криптография
- Как работает шифрование
- Зачем нужна криптография
- Где используется криптография
- Примеры использования криптографии
- Виды криптографических методов
- Симметричное шифрование
- Асимметричное шифрование
- Хэширование
- Как криптография используется в блокчейне
- Как криптография регулируется государством
- Заключение
Общие сведения о криптографии, шифровании информации
Необходимость защитить конфиденциальную информацию появилась задолго до изобретения интернета. Можно предположить, что защитой ценных и значимых сведений люди занимались на протяжении всей истории, особенно в периоды военных действий.
Что изучает наука криптология
Мировая практика выработала три основных способа защиты информации:
- физическая защита;
- стенографическая защита;
- криптографическая защита.
Физическая защита
Сущность метода заключается в создании надежного канала связи. Как правило, речь идет о защите материального носителя (бумаги, магнитного диска или флэш-карты). Каналом связи в различные периоды истории являлись секретные курьеры, почтовые голуби или засекреченные радиочастоты. Этот метод используется и в современных автоматизированных системах обработки данных: для них создают условия изоляции и охраны.
Стенографическая защита
Защита подразумевает не только физическую маскировку и изоляцию носителя, но и попытку скрыть сам факт существования информации, которая интересует противника. Как правило, секретную информацию прячут на видном месте среди незасекреченных данных.
Например: под маркой на почтовом конверте или под обложкой книги может быть скрыта микрофотография. Важные данные прячут в книгах, пуговицах, каблуках туфлей и даже в пломбах зубов.
С развитием информационных технологий кардинально изменились или усложнились стенографические методы. Например: секретное сообщение может быть спрятано в файле с графическим изображением, где младший бит в описании пикселей заменяется битом сообщения.
Криптографическая защита
Наиболее надежный и современный способ защиты. Чтобы скрыть информацию от противника, данные проходят специальное преобразование.
Определение! Криптография – это, в переводе с греческого, «тайнопись», наука, которая занимается математическими методами преобразования информации.
Криптоанализ – занимается преодолением криптографической защиты без знания ключей.
Криптографию и криптоанализ объединяют в одну науку – криптологию. Она занимается следующими вопросами:
- оценкой надежности систем шифрования;
- анализом стойкости шифров;
- преобразованием информации для защиты от несанкционированного вмешательства.
Современные методы шифрования данных бывают настолько сложны, что в них могут разобраться только специалисты узкого профиля, занимающиеся математическим анализом и информационными технологиями.
Криптографические методы требуют больших финансовых вложений: чем выше требуемый уровень защиты информации, тем выше стоимость шифрования.
Требования к криптографическим системам защиты информации
Основные нормы для всех современных криптографических систем защиты подразумевают, что зашифрованное сообщение может быть прочитано только при помощи заданного ключа, а доступность алгоритма шифрования не повлияет на уровень защиты.
Перечисленные требования выполняются не для всех алгоритмов шифрования. В частности, требование отсутствия слабых ключей (ключей, которые позволяют крипто аналитику вскрыть зашифрованное сообщение) не выполняется для некоторых более ранних блочных шифров.Однако новые системы шифрования удовлетворяют требуемым параметрам.
Важные определения
Шифрование – процесс криптографического преобразования текста на основе определенного параметра (ключа) и алгоритма.
Расшифрование – криптографическое преобразование шифрованного текста в исходный.
Шифр – совокупность обратимых преобразований исходных данных в скрытый текст.
Шифр с открытым ключом (ассиметричный) – шифр с двумя ключами: шифрующим и расшифровывающим.
Исходный текст – данные, не обработанные посредством криптографических методов.
Шифрованный текст – данные с ключом, обработанные криптосистемой.
Ключ – параметр шифра, с помощью которого производится преобразование текста.
Открытый ключ – один из двух ключей ассиметричной криптосистемы, который находится в свободном доступе.
Закрытый ключ – секретный ключ ассиметричной системы шифрования.
Дешифрование – извлечение исходного текста без использования криптографического ключа, используя только шифровочный.
Криптостойкость — устойчивость шифра для дешифрования криптоаналитиком без знания ключа.
Правовые нормы
Деятельность, связанная с криптографическим шифрованием, подлежит контролю со стороны государства. Криптография в России регулируется документом «Об утверждении положений о лицензировании отдельных видов деятельности, связанных с шифровальными (криптографическими) средствами» постановленном Правительством Российской Федерации, обязательному лицензированию подлежат шифровальные средства и техническое обслуживание этих средств.
Кром того, предоставление услуг, касающихся шифрования информации, производства криптографических средств и их разработка находятся под контролем государства. На эти виды деятельности требуется специальное разрешение.
Приказ ФСБ России от 9 февраля 2005 г. N 66 «Об утверждении положения о разработке, производстве, реализации и эксплуатации шифровальных (криптографических) средств защиты информации (положение пкз-2005)» определяет порядок разработки и использования средств шифрования.
В настоящее время действует закон, который определяет порядок разработки и эксплуатации криптографических средств.
Согласно Указу Президента РФ от 3 апреля 1995 государственным структурам запрещено использовать криптографические средства, защищенные технические устройства хранения, обработки и передачи информации, которые не имеют лицензии агентства правительственной связи.
Сферы применения криптографии
Применение криптографии позволяет выполнять следующие задачи:
- шифрование данных при их передаче по открытым каналам связи, например, посредством интернета);
- шифрование данных для защиты от несанкционированного доступа;
- шифрование информации при работе банка с клиентами во время выполнения операций с пластиковыми картами);
- обработка и хранение личных паролей пользователей интернет сетей;
- защита финансовых и отчетных документов организаций, которые передаются через удаленные каналы связи;
- банковское обслуживание предприятий через сети;
- обеспечение защиты информации, хранящейся на жестком диске компьютера от несанкционированного доступа через сеть.
Криптографические методы, разработанные в прошлом столетии, были направлены только на защиту информации от несанкционированного доступа. Сегодня спектр задач значительно расширился. Остро встала необходимость проверки подлинности сообщений, целостности передаваемых данных и источника пересылки.
История
До наших дней доходят интересные исторические сведения о некоторых стенографических способах защиты информации. В древней Греции практиковали следующий способ: тайное послание выцарапывали на бритой голове раба, а когда волосы отрастали, раба посылали к получателю. Адресат прочитывал послание, вновь побрив раба наголо.
Симпатические чернила – еще один очень распространенный способ передачи информации, которая не предусмотрена для посторонних глаз. Такими чернилами писали между строк обычного письма. Адресат получал сведения, воспользовавшись проявителем.
Исторические способы шифрования
Существуют достоверные исторические сведения о том, что практические методы шифрования широко использовались в Индии, Египте и Месопотамии. В Древнем Египте система скрытых посланий была создана кастой жрецов.
Воины Спарты использовали в качестве «шифровальной машины» цилиндрический жезл определенного диаметра, на который наматывалась полоска папируса. Сообщение писали открытым текстом и отправляли адресату, но прочитать сообщение можно было только намотав папирус на цилиндр того же диаметра.
У историков есть предположение о том, кто первым изобрел дешифровальное устройство. Его авторство приписывают Аристотелю: он сконструировал конусообразное копье, на которое наматывался папирус с перехваченным сообщением. Лента помещалась на конус и передвигалась до тех пор, пока на нужном диаметре не появлялся исходный текст.
Шифрование использовалось и в арабских странах. Считается, что само слово «шифр» произошло от арабской «цифры». Сведения о древнем криптоанализе можно найти в энциклопедии «Шауба аль-Аша».
История криптографии продолжилась и в средневековой Европе, где шифрованием занимались священники, военные, ученые и дипломаты. Трудами по криптографии в XIV-XVI веках увлекались секретари канцелярии католических понтификов Чикко Симоннети, Габлиэль де Лавинда и архитектор Леон Баттиста Альберти. Они внесли значительную лепту не только в теоретическое собрание методов и способов шифрования, но и в усовершенствование этих методов.
Криптографией занимались такие видные деятели и ученые своего времени как Платон, Пифагор, Галилей, Паскаль, да Винчи, Эйлер, Ньютон, Бэкон и многие другие.
В XIX веке, с началом научно-технического прогресса и изобретением телеграфа появились первые коммерческие и государственные шифры. Росла скорость шифрования. В конце века криптография окончательно оформилась в самостоятельную науку.
Вторая Мировая война и послевоенный период
Появление радиосвязи позволило передавать информацию с высокой скоростью и вывело шифрование на новый электромеханический, а после электронный уровень. Появились узкие специалисты по дешифровке и перехвату данных. В XX веке возникает специализация в криптографической деятельности. Появляются специалисты по шифрованию, по перехвату зашифрованных сообщений, по дешифрованию данных противника.
В 20е годы были сконструированы роторные шифровальные машины, которые выполняли все операции по преобразованию информации, что затем передавалась по радиоканалам. Они использовались всеми государствами-участниками Второй Мировой войны.
Алгоритмы для роторных машин разрабатывали лучшие математики и инженеры. К. Шеннон –один из видных деятелей того времени в своем труде сформулировал условия нераскрываемости шифров.
Электронные вычислители пришли на смену электромеханическим машинам в послевоенные годы прошлого столетия. Теперь информацию рассекречивали большими фрагментами. Криптографические программные средства начали использовать в коммерческих и гражданских целях для пересылки данных.
Современные методы засекречивания информации
В сегодняшнем гиперинформационном мире шифровальные технологии не просто вышли на новый уровень, но и претерпели значительные изменения. Теперь криптография как наука стала серьезно изучаться и реализовываться в различных направлениях.
Теперь в процессе обмена информацией участвуют не только две стороны: отправитель и адресат, но и другие абоненты. Появилась необходимость в надежной защите и новых способах передачи дешифровочных ключей. В 70е годы У. Диффи и М. Хеллман представили новый принцип шифрования с открытым начальным ключом. Его назвали ассиметричным. Это позволило расширить области использования криптографических методов. Сегодня они применяются в банковских операциях при работе с пластиковыми картами клиентов, в сфере электронной валюты, телекоммуникациях и многих других удаленных операциях, которые выполняются чрез локальную и глобальную сеть.
Современная криптография использует открытые алгоритмы шифрования. Распространены симметричные (DES, AES, Camellia, Twofish, Blowfish), и ассиметричные RSA и Elgamal (Эль-Гамаль) алгоритмы.
Методы шифрования используют как частные и юридические лица, так и государственные структуры. Так, США имеют государственный стандарт шифрования AES. Российская Федерация использует алгоритм блочного шифрования ГОСТ 28147-89 и алгоритм цифровой подписи ГОСТ Р 34.10-2001.
Одно из современных достижений криптографии это создание платежной системы с электронной валютой под названием «биткоин», которая уже широко используется при проведении многих коммерческих операций. Она была создана в 2009 году и считается первой подобной системой. На данный момент есть огромное количество криптовалют, которые пытаются улучшить и дополнить идеи реализованные в биткоине.
Источник
Для чего нужна криптография и как она работает: основные понятия
Мы ежедневно сталкиваемся с криптографией — когда хотим что-то оплатить в интернете, авторизоваться на сайте или подписать электронные документы. Криптографические методы помогают защитить персональные данные и обеспечивают безопасную передачу информации в сети.
Без криптографии современную жизнь нельзя было бы представить в том виде, который нам известен. Перестали бы выполняться банковские транзакции, остановилась бы передача интернет-трафика, а сотовые телефоны не смогли бы работать. Все конфиденциальные сведения оказались бы общедоступными и могли бы попасть к злоумышленникам.
Криптография предотвращает подобные угрозы и поддерживает безопасность. Разбираем, как устроены её методы и можно ли им доверять. Перечисляем сферы, где она применяется и как регулируется государством.
Что такое криптография
Криптография — это наука о способах и методах шифрования информации. Она защищает передаваемые сообщения и использует опробованные в открытых средах алгоритмы, которые позволяют быстро обнаруживать и устранять любые уязвимости.
К основным принципам работы криптографической системы относят:
- Конфиденциальность — информация никогда не раскрывается не авторизованным пользователям.
- Идентификацию и аутентификацию — перед обменом данными отправитель и получатель идентифицируются, а затем проходят авторизацию.
- Целостность — информация не изменяется и не перемещается.
- Предотвращение отказа — нельзя отказаться от создания или передачи сообщения, что обеспечивает цифровую легитимность и отслеживание транзакций.
Для продолжения изучения криптографии важно разобраться с её основными терминами:
Шифр — совокупность способов преобразования исходного секретного сообщения для его защиты.
Открытый текст — исходное сообщение, которое нужно преобразовать.
Символ — любой знак, который используется для кодирования информации.
Алфавит — множество символов.
Шифрованное сообщение — сообщение, полученное после преобразования с использованием шифра.
Зашифрование — преобразование открытого текста в криптограмму.
Ключ — информация, которая необходима для шифрования и расшифрования сообщений.
Как работает шифрование
Рассмотрим типичную схему обмена сообщениями между абонентами, которые хотят защитить передаваемые данные от посторонних:
- Абонент передаёт открытое сообщение.
- Криптографические методы преобразуют данные в шифрованное сообщение.
- Адресат получает сообщение и расшифровывает его с помощью ключа.
Зачем нужна криптография
Цель криптографии — защита информационной системы от атак злоумышленников.
Криптография решает несколько задач:
- защищает данные от несанкционированного доступа — зашифрованную информацию может прочитать только законный пользователь, обладающий ключом;
- проверяет подлинность сообщений — получатель всегда может проверить источник сообщения;
- проверяет целостность передаваемых данных — получатель может проверить, не было ли сообщение изменено в процессе пересылки;
- гарантирует отправку и получение сообщения — ни получатель, ни отправитель не могут отказаться от факта передачи.
Где используется криптография
Почти все важные аспекты нашей жизни зависят от информационных технологий и гаджетов, поэтому криптография используется повсеместно.
Вот сферы, где она применяется наиболее активно:
- банки — для обслуживания карт и счетов;
- веб-сайты с аутентификацией — для хранения и обработки паролей в сети;
- бухучёт — для сдачи бухгалтерских и иных отчётов через удалённые каналы связи;
- информационная безопасность — для защиты от несанкционированного доступа к данным;
- онлайн-продажи — для шифрования данных, номера карты или телефона, адреса, email при передаче по открытым каналам.
То есть, криптография есть везде, где фигурируют информационные технологии и присутствует цифровизация. Это довольно перспективное направление для обучения.
Примеры использования криптографии
Если вы рядовой пользователь , криптография помогает обеспечить приватность. Зная, как работает определённый шифр или протокол, в чем его плюсы и минусы, вы сможете осознанно выбирать инструменты для работы и общения в сети, избежать утечки данных.
Если вы программист или специалист по информационной безопасности , криптография помогает в создании крупных проектов. Неважно, что конкретно вы разрабатываете: контентный сервер, мессенджер или мобильное приложение, везде есть данные, которые нужно защищать от перехвата. Криптография защищает каждую операцию специальными протоколами и исключает попадание информации к злоумышленникам.
Также криптографические методы используют при проведении электронных голосований, жеребьёвках, разделении секретов, когда конфиденциальная информация делится между несколькими субъектами, чтобы они могли воспользоваться ею только вместе.
Виды криптографических методов
Есть разные способы классификации криптографических методов, но наиболее распространённый вариант деления — по количеству ключей.
Выделяют следующие виды:
- бесключевые методы , в которых не используются ключи;
- одноключевые или симметричные методы , в который используется дополнительный ключевой параметр — секретный ключ;
- двухключевые или асимметричные методы , в которых используется два ключа — секретный и открытый.
Классификация криптографических методов
Разберём наиболее часто используемые криптографические методы: симметричное шифрование, асимметричное шифрование и хэширование.
Симметричное шифрование
Симметричное шифрование подразумевает, что при передаче зашифрованной информации адресат должен заранее получить ключ для расшифровки информации.
- единственная схема шифровки, обладающая абсолютной теоретической стойкостью, — все попытки расшифровать её бесполезны.
- в случае утечки информации невозможно доказать, от кого она произошла;
- помимо секретного ключа нужен открытый канал для его передачи.
У асимметричного шифрования таких проблем нет, поскольку открытый ключ можно свободно передавать по сети. Обычно асимметричное и симметричное шифрование используют в паре, чтобы передать ключ симметричного шифрования, на котором шифруется основной объем данных.
Асимметричное шифрование
Основы асимметричного шифрования были выдвинуты американскими криптографами Уитфилдом Диффи и Мартином Хеллманом. Они предположили, что ключи можно использовать парами — ключ шифрования и ключ дешифрования. При этом один ключ нельзя получить из другого. Поэтому суть метода заключается в том, что зашифрованная при помощи секретного ключа информация может быть расшифрована только при помощи открытого и наоборот. Ключи создаются парами и соответствуют друг другу.
Основная особенность асимметричного шифрования — секретный ключ известен лишь одному человеку. При симметричном шифровании он должен быть известен двоим.
- не нужно создавать защищённый канал для передачи секретного ключа — все взаимодействия происходят в открытом канале;
- наличие единственной копии ключа уменьшает шансы его утраты и позволяет установить персональную ответственность за сохранение тайны;
- наличие двух ключей позволяет использовать шифрование в двух режимах — секретной связи и цифровой подписи.
- возможность подмены открытого ключа,
- медленная скорость шифрования.
Большинство безопасных алгоритмов с открытыми ключами построены на необратимых функциях. Простейший пример — алгоритм RSA. Он используется для защиты программного обеспечения и в схемах цифровой подписи.
Хэширование
Хэширование — преобразование данных произвольной длины в битовую строку фиксированной длины. Вы можете взять любой текст, скажем, повесть Пушкина «Капитанская дочка» и зашифровать её при помощи специального алгоритма.
Всякий раз алгоритм будет преобразовывать текст в один и тот же хэш. Например, такой.
Но если в исходном тексте потеряется хотя бы одна запятая, хэш полностью изменится.
Единственный доступный способ расшифровать хэш — перебор. Чтобы найти верный вариант, нужно перебрать тысячи комбинаций.
- для криптоустойчивой хэш-функции нельзя вычислить по хэшу исходные данные или подобрать другие данные с таким же хэшем;
- по значению ключа можно расшифровать данные за одну операцию;
- после вычисления хэш может передаваться и существовать отдельно от данных, его можно вычислить повторно.
- нельзя провести операцию, обратную хэшированию, и восстановить исходные данные;
- вас могут взломать с помощью перебора, если хэш-функция не криптоустойчива.
К хэшированию обращаются для хранения паролей. Когда пользователь регистрируется в системе, его данные хранятся не в чистом виде, а в виде хэша. И всякий раз, когда он вводит пароль, тот хэшируется снова и только потом сравнивается с имеющимся в базе. То есть, даже если база будет украдена, никто не сможет узнать реальные пароли. Благодаря этому свойству хэширование активно применяют в блокчейне
Как криптография используется в блокчейне
Криптография используется в блокчейне как средство защиты пользователей. Она помогает обеспечить безопасность транзакций сохранить личную информацию.
Блок — единица кода, которая выполняет функцию хранилища данных обо всех действиях.
Сформированный блок проверяется участниками сети и, если все согласны, то его присоединяют к цепочке, из-за чего изменить информацию в нем невозможно. Особенность каждого блока в том, что он не только захэширован, но и хранит информацию о предыдущем блоке.
Блокчейн — постоянно увеличивающаяся цепочка таких блоков.
Если мы внесём изменения во вторую запись, её хэш станет совсем другим и перестанет совпадать с тем, что был записан в третью. То есть блокчейн позволяет создавать записи, которые невозможно изменить незаметно.
Блокчейн активно используется в криптовалюте, например, BitCoin. Если кто-то захочет украсть её, ему придётся одновременно изменять блоки на всех компьютерах. Также блокчейн используют при хранении ставок, при проведении выборов, чтобы избежать фальсификации и при заверении документов
Важно понимать, что система не надёжна на 100%. В программном обеспечении могут возникать ошибки, позволяющие воровать данные до того, как они будут захэшированы.
Как криптография регулируется государством
Деятельность, связанная с криптографическим шифрованием, ограничена на территории России. Основной уполномоченный орган — Федеральная служба безопасности. ФСБ вправе осуществлять государственный контроль за организацией и функционированием криптографической безопасности. За органами ФСБ закреплена функция регулирования разработки, производства, реализации, эксплуатации, ввоза и вывоза шифровальных средств.
Также есть нормативные правовые акты, регулирующие криптографию в России:
Закон | Что делает |
Указ Президента №334 от 03.04.1995 |
|
ГОСТ Р 34.10-2012 |
|
ГОСТ Р 34.11-2012 |
|
Положение ПКЗ-2005 |
|
ФЗ РФ от 06.04.2011 «Об электронной подписи» |
|
ФЗ РФ от 04.05.2011 №99 «О лицензировании отдельных видов деятельности» |
|
Постановление Правительства РФ от 16.04.2012 №313 |
|
Заключение
Это только малая часть того, что можно узнать по теме криптографии. Если вы просто хотели понять, что это такое, надеемся, вы удовлетворили интерес. Если хотите изучить тему глубже, советуем пройти онлайн-курсы из нашей подборки. На них вы подробно разберёте тему кибербезопасности и сможете освоить востребованную профессию.
Источник