Криогенный способ получения гелия

Криогенный способ получения гелия

Криогенный способ получения гелия является наиболее широко распространенным способом и основан на последовательной конденсации компонентов природного газа при понижении температуры. На криогенных установках получают гелий-сырец или гелиевый концентрат с содержанием гелия 50-85% об., который затем для получения высокочистого гелия (99.995% об.) подвергают химической, адсорбционной или каталитической очистке.

Существуют два варианта технологических схем криогенных установок [1], приведенных на рис. 11.1 и 11.2.

По варианту I (рис.11.1) природный газ под давлением 2 МПа охлаждается в рекуперативных теплообменниках до — 28°С и аммиаком до -45°С, затем дросселируется до 1.2 МПа и поступает в колонну. В ней от газа отделяется в основном метан с примесью азота V, а сверху уходит газ с содержанием гелия около 3% (об.). Этот газ еще раз конденсируется ( кипящим при 0.4 МПа азотом) во второй колонне, сверху которой уходит гелиевый концентрат III, содержащий до 80-90% гелия. Верх первой колонны охлаждается ее же кубовой жидкостью, дросселированной до давления 0.15 МПа.

По варианту II ( рис.11.2) очищенный и осушенный газ I под давлением 3.2 МПа охлаждается вначале пропаном, затем в двух рекуперативных теплообменниках ( с промежуточной сепарацией) до -104°С и после дросселирования с температурой -153°С подается в колонну. Снизу этой колонны отводится в основном метан. Верх колонны охлаждается за счет рекуперации холода, отчего в ней поддерживается температура -191°С, при которой сверху отводится смесь гелия и азота. Эта смесь затем доохлаждается в двух рекуперативных теплообменниках и в двух сепараторах разделяется на концентрат гелия (85%) и концентрат азота (99.5%). Последний, расширяясь в турбодетандере 5, охлаждает верх колонны и отводится как продукт. По такому варианту извлекается около 85-96% гелия от его исходного содержания в газе ( по варианту I степень извлечения ниже и не превышает 85%).

Полученный на криогенных установках гелиевый концентрат подвергают глубокой очистке с использованием еще более глубокого охлаждения. Очистка направлена на удаление из концентрата примесей водорода, азота, метана и др. и обычно состоит из четырех стадий:

— очистка концентрата от примесей водорода его окислением на специальном катализаторе, содержащем оксид меди;

— глубокая осушка от влаги, образовавшейся при окислении водорода, абсорбцией на молекулярных ситах-цеолитах или оксиде алюминия;

— сжатие концентрата до 15-20 МПа и охлаждение до минус 207°С с последующим его дросселированием и сепарацией в одну или две ступени для удаления остатков азота. Концентрат после этой стадии содержит гелий в количестве 99.5% об.;

— адсорбционная доочистка концентрата на активированных углях, охлаждаемых жидким азотом. После этой стадии получают товарный гелий концентрацией 99.98% об.

Товарный гелий хранят в сжатом или сжиженном виде. Сжатый гелий находится в газовых баллонах под давлением до 15 МПа.

Для перевода товарного гелия в жидкое состояние его сначала охлаждают жидким азотом, затем направляют последовательно в турбодетандер и парожидкостной турбодетандер ( или дросселируют). В результате этих процессов гелий частично переходит в жидкую фазу, которую доочищают в адсорберах, размещенных в агрегатах охлаждения, от примесей воздуха и неона.

Полученный жидкий гелий заливают в сосуды Дьюара различной вместимости, а большие количества ( до 120 м 3 ) — в криогенные хранилища.

Источник

Методы получения гелиевого концентрата

Получение гелиевого концентрата возможно четырьмя способами — криогенным, абсорбционным, путем гидратообразования и диффузией через пористые мембраны. Из этих способов толь­ко первый получил промышленное применение, а остальные по ряду причин не вышли за рамки опытно-промышленных или исследовательских работ.

Криогенный способ основан на охлаждении газа до температу­ры конденсации азота, при которой конденсируется и метан, а гелий остается в газовой фазе в виде концентрата. По варианту, представленному на принципиальной технологической схеме (рис.40), очищенный и осушенный газ под давлением 3,2 МПа охлаждается вначале пропаном, затем в двух рекуперативных теплообменниках (с промежуточной сепарацией) до -104°С и после дросселирования с температурой -153°С подается в колонну. Снизу этой колонны отводится в основном метан. Верх колонны охлаждается за счет рекуперации холода, отчего там поддерживается температура -191°С, при которой сверху отводится смесь гелия и азота. Эта смесь затем доохлаждается в двух рекуперативных теплообменниках и в двух сепараторах разделяется на концентрат гелия (85%) и концентрат азота (99,5%). Последний, расширяясь в турбодетандоре 5, охлаждает верх колонны и отводится как продукт. По такому варианту извлекается около 95 — 96% гелия от его исходного содержания в газе.

Читайте также:  Horseoil bioaqua маска способ применения

Криогенные методы, несмотря на высокие эксплу­атационные затраты, весьма эффективны, так как позволяют на различных стадиях выделения гелия из природного газа попутно получать ценные товарные продукты — этан, метановую фракцию и ШФЛУ.

Абсорбционный способ получения гелиевого концентрата основан на использовании активных поглотителей метана (ССI3F, ССI2F2 и др.). Их поглотительная способность по метану в 10-20 раз выше, чем по гелию, а при пониженных до минус 20 — минус 30°С температурах различие еще более возрастает. В итоге в газе концентрируется гелий, но получаемый при этом концентрат хуже, чем полученный криогенным способом

Способ гидратообразования основан на том, что в отличие от метана, этана, углекислого газа и азота гелий не образует с водой гидратов при низких температурах и высоких давлениях. Если при таких условиях создать интенсивный контакт воды и газа в соотношении от 20 : 1 до 100 : 1, то почти все компоненты газа перейдут в твердое состояние (гидраты), а из контактора выйдет гелиевый концентрат. Недостаток способа — потребность в больших количествах воды и усложнение последующей глубокой осушки гелиевого концентрата.

это

Рис.40. Принципиальная схема получения гелиевого концентрата:

1сепараторы; 2-колонны; 3-холодильник; 4-рекуперативные теплообменники; 5 турбодетандер; 6 компрессор. I -природный газ; II — жидкие углеводороды; III — гелиевый концентрат; IV концентрат азота; V сухой газ (метан-азотная смесь).

Мембранный способ основан на высокой проникающей спо­собности гелия в сравнении с другими газами и способностью его селективно проникать (фильтроваться) через очень мелкие поры различных материалов, выполненных в виде пленок -мембран. Методы выделения гелия с помощью мембранной технологии менее энергоемки, особенно при небольшом содержании гелия, по сравнению с криогенным способом и позволяют получить не только гелиевый концентрат, но и выделить из него чистый гелий. Сущность этого способа разделения была рассмотрена в разделе, посвященном различным методам концентрирования и разделения углеводородных газов. Для применения на практике мембраны должны обладать высокой абсолютной проницаемостью для гелия и высокой селек­тивностью, быть химически и физически стабильными, иметь высокую прочность и быть лишенными дефектов в виде микропор. Именно в этих направлениях проводятся широкие исследования для разработки и совершенствования мембранной технологии. В настоящее время за рубежом мембранные технологии нашли широкое применение. В нашей стране мембранные установки для получения чистого гелия из гелиевого концентрата в основном находятся на стадии пилотных или промышленных испытаний и на отечественных заво­дах пока не эксплуатируются. Однако уже получены положительные результаты испытаний, например, мембран в виде плоских пленок на основе полиэфиримида. Метод этот весьма перспективен и заслуживает более подробного рассмотрения.

Традиционный криогенный метод извлечения гелия из при­родного газа, описанный выше, позволяет получать продукты требуемого качества и является в настоящее время наиболее распространенным способом получения гелия. Но при низких содержаниях гелия в природном газе (0,05 — 0,08 % об.) этот метод оказывается неэффективным, так как в этом случае требуется организация многоступенчатого процесса, что значительно повышает капитальные и эксплуатационные затраты. Использованием мембран для получения гелиевого концентрата с его последующей ректификацией можно существенно улучшить экономику процесса.

Учитывая все существующие требования к продуктам разделения природных газов, для селективного извлечения гелия из обедненных газов лучше всего использовать кварцевое стекло. При этом из газа, содержащего, % об.: 0,05 Не, 85 СН4, 14,95 N2, получается чистый (99,99 % об.) Не при перепаде давления на мембранах 7,0 МПа. Основным недостатком, затрудняющим внедрение этого процесса в промышленность, является сложность изготовления аппаратуры с кварцевыми волокнами. Кроме того, несмотря на высокую селективность по гелию, удельная производительность аппарата с кварцевыми капиллярами мала.

Более эффективны производительные, хотя и менее селек­тивные, полимерные мембраны . Фактор разделения бинарной смеси гелий — метан у большинства полимеров мо­жет достигать высоких значений, вплоть до 150 — у полиэфиримидов, 325 — у полиперфтор-2-метилен-4-метил-1,3-диоксалана и 1310 — у блоксополимера с тетрафторэтиленом. Перспек­тивны также мембраны на основе ацетата целлюлозы, поликарбонатов и полисульфонов. Фактор разделения смеси гелий — азот у большинства полимеров значительно больше единицы и может достигать: 100-у ацетатцеллюлозных, 300-у фтор- и кислородсодержащих полимеров. Высокой производительностью обладают асимметричные мембраны из ПВТМС, но поскольку значение фактора разделения для этих мембран 15-20, необходим многоступенчатый процесс.

Читайте также:  Глаголы образованные приставочным способом правило

Поверхность используемых на промышленных установках мембран очень велика. Кроме того, газ поступает на разделение при высоких давлениях. Поэтому особенно важно обеспечить максимально высокую плотность упаковки мембран в аппаратах. В промышленности преимущественно используют рулонные и половолоконные модули.

Промышленные аппараты для мембранного разделения газов должны удовлетворять следующим требованиям: иметь высокую степень упаковки, т.е. возможно большую поверхность мембран в единице объема аппарата; быть технологичными в сборке, доступными для осмотра и ремонта, надежными и работоспособными в течение длительного времени; обеспечивать равномерное распределение газовых потоков в напорном и дренажном пространстве мембранных элементов; иметь невысокое ги­дравлическое сопротивление и быть герметичными.

На рис.41. приведена схема мембранной трехступенчатой установки получения гелиевого концентрата из природного газа. На этой установке использованы мембранные модули на основе полых волокон из блок-сополимера тетрафторэтилена с гексафторэтиленом .

Природный газ с низким содержанием гелия (0,06%), предварительно очищенный от кислых компонентов, компримируется до давления 7 МПа, объединяется с ретантом – потоком, не прошедшим через мембрану, отводимым из мембранного аппарата второй ступени разделе­ния, и поступает в мембранный модуль первой ступени. Ретант с первой ступени, практически не содержащий гелия, направляется к потребителю как товарный газ, а пермеат (проникающий поток, обогащенный гелием) после компримирования до первоначального дав­ления поступает на вторую ступень мембранного разделения. Пермеат второй ступени разделения содержит 30 % об., а пермеат третьей ступени — 90 % об. гелия.

Полученный гелиевый концентрат, содержащий остаточные количества метана, азот, водород, а также небольшие количества инертных газов (неон и т.п.), направляют на выделение чистого гелия по мембранной или криогенной технологии.

В промышленности для очистки гелия от азота, неона и мик­ропримесей используются низкотемпературные конденсация и адсорбция — процессы, требующие как значительных энергетических затрат, так и хладагента — жидкого азота, поскольку протекают при температурах минус 175-200ºС. Мембранное разделение и концентрирование газов являются альтернативой низкотемпературным методам, так как они протекают при температуре окружающей среды и невысоких давлениях. Использование мембран позволяет снизить энергоемкость процесса, сократить потери при нагреве и охлаждении технологических потоков.

Согласно результатам отечественных исследований и зарубежного опыта эксплуатации установок, весьма эффективным представляется комбинация мембранного и криогенного методов разделения: получение гелиевого концентрата (75 — 95 % об. гелия) по мембранной технологии с последующим криогенным выделением чистого гелия (сочетанием низкотемпературных конденсации и адсорбции). Такая комбинация ме­тодов позволяет на 20% снизить себестоимость товарного продукта по сравнению с традиционным криогенным способом выделения гелия.

Источник

Получение гелия

Получение гелия

Сегодня единственным коммерчески доступным источником промышленного получения газообразного гелия являются гелийсодержащие природные и попутные нефтяные газы. Естественная концентрация гелия в углеводородных газах колеблется от 0,05 до 1,9 % в зависимости от месторождения. В настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1% гелия. Разработка месторождений с содержанием гелия в газе менее 0,1% считается нецелесообразной.

В основном запасы и ресурсы природного газа, содержащего высокую концентрацию гелия, сконцентрированы в Катаре (более 20%), США (18%), Алжире (17%). 13 из 16 действующих в мире заводов по извлечению гелия находятся в США, 1 в Алжире, 1 в Катаре, 1 в России. Пока в России извлекается около 3% от общемирового объема производства гелия.

В России газообразный гелий в промышленных масштабах получают из природного газа с низким содержанием гелия (до 0,055 % об.), добываемого на Оренбургском нефтегазоконденсатном месторождении. Извлечение гелия из природного газа осуществляет Оренбургский гелиевый завод (ОГЗ) – единственное в стране гелий добывающее предприятие. ОГЗ — это одна из составных частей крупного газохимического комплекса – «Газпром добыча Оренбург». Созданное в 1977 г. уникальное предприятие – это единственный в мире завод, работающий на природном газе с низким содержанием гелия. Комплексная переработка газа с извлечением гелия, этана, широкой фракции легких углеводородов (ШФЛУ) значительно уменьшает себестоимость продукции. Гелий, полученный в Оренбурге, обеспечивает до 25% потребности Европы в гелии.

На ОГЗ отработаны базовые технологии гелиевой промышленности:

— предварительная осушка и очистка природного газа;

— выделение целевых продуктов – широкой гаммы углеводородов, в том числе метана, этана, ШФЛУ.

— криогенная ректификация природного газа с получением гелиевого концентрата;

— тонкая очистка гелиевого концентрата от водорода, азота, углекислоты и неона;

— хранение и транспортировка жидкого гелия.

Мембранные гелиевые компрессоры в одном из цехов Оренбургского гелиевого завода
Читайте также:  Способы при межличностной коммуникации

Получение гелиевого концентрата

Установки получения гелиевого концентрата базируются на применении технологии глубокого охлаждения. Осушенный и очищенный природный газ подвергается глубокому охлаждению до температур порядка -190 о С. Охлаждение производят в несколько стадий, добиваясь последовательной конденсации входящих в состав природного газа CO2 и углеводородов: бутан+ → пропан → этан → метан → азот. Вследствие проведения низкотемпературной конденсации в газообразном состоянии остается гелиевый концентрат, в котором необходимого вещества уже имеется 70-85%.

Температура сжижения некоторых газов, о

Газ Т, о С
Бутан+ -12
Пропан -42
Этан -89
Метан -161
Азот -196
Неон -246
Водород -253
Гелий -269

Обогащение гелиевого концентрата.

Полученный гелиевый концентрат обогащают при еще более низких температурах, удаляя из него примеси азота, углекислого газа, неона, водорода. Для этого гелиевый концентрат подвергают каталитической и адсорбционной очистке:

— проведение каталитического гидрирования для очистки от водорода (4-5%) с помощью CuO при температуре +400…+500 о С.

— осушка оксидом алюминия от влаги, образуемой водородом.

— сжатие под давлением около 200 бар и охлаждение до -210°C.

— проведение двух стадийной сепарации.

— отделение газовой фазы, содержащей 99,5% гелия.

— доочистка отделяемого газа кипящим под вакуумом азотом и адсорбцией примесей на активном угле адсорберах, также охлаждаемых жидким N 2 .

На выходе с установки получается гелий технической чистоты (99,80% по объёму гелий) и высокой чистоты (99,985%).

В подавляющем большинстве случаев гелий перевозится автомобильным транспортом в жидком виде в криогенных контейнерах емкостью 40 м 3 .

По разным оценкам, от четверти до трети мировых разведанных запасов гелия сосредоточено в Российских нефтегазовых месторождениях. Гелий в уникальных концентрациях (0,15-1 %) содержится в природном газе месторождений Восточной Сибири и Республики Саха (Якутия). Основной потенциал производства гелия сосредоточен на Чаяндинском, Ковыктинском, Собиновском и Юрубчано-Тахомском нефтегазоконденсатных месторождениях с общим объемом переработки гелийсодержащего газа более 60 млрд м3 в год. Освоение углеводородов в этих регионах и комплексная переработка природных газов с высоким содержанием гелия позволит намного снизить его себестоимость и к 2020 году увеличить долю России в производстве гелия с 3% до 50%.

Процесс извлечения гелия (особенно криогенный, применяемый на Оренбургском заводе) требует значительных инвестиций и энергозатрат. В процессе подготовки к освоению новых газовых месторождений Газпромом найдены эффективные технологические решения по извлечению гелия из природного газа и его сохранению.

Задача решается фильтрацией всего объема добываемого газа с использованием пористых мембран – так называемого «молекулярного сита» для отделения гелия от природного газа. Природный газ, представляющий собой молекулярную смесь, пропускается через мембранные модули со свернутой в рулон пористой мембраной или полые волокна с пористыми стенками. При этом более легкие и подвижные молекулы (в нашем случае гелий) под воздействием избыточного давления просачиваются (уходят из газа) через поры сквозь мембрану или стенки волокон.

Скорость проникновения газов через вещество мембраны
Быстрые газы Медленные газы
H 2 O He H 2 NH 3 CO 2 O 2 CO Ar N 2 CH 4 C 2 H 6 C 3 H 8

В создании новых технологий по выделению гелия из газа крупнейших месторождений Восточной Сибири участвуют специалисты ОГЗ, НПО «Гелиймаш», Газпрома. В частности, на ОГЗ создается площадка для испытания мембранных технологий выделения гелиевого концентрата. Испытания Газпромом опытной мембранной установки извлечения гелия из природного газа в реальных условиях на Марковском месторождении подтвердили эффективность такого метода. По результатам испытаний выбрана двухступенчатая схема установки без рециркуляции, которая позволяет с минимальными энергозатратами получать 30%-й концентрат гелия и снижать концентрацию гелия в подготовленном для транспортировки потребителям газе до уровня ниже 0,05%. В установке использовались мембранные модули с полыми волокнами. Применение мембранной технологии взамен криогенной позволяет вдвое снизить капиталовложения и энергопотребление.

Полученный на мембранных установках гелиевый концентрат будет по мере необходимости направляться на очистные криогенные установки для получения товарного гелия, что значительно повысит эффективность последних. Для получения товарного гелия в рамках Восточной газовой программы Газпром планирует построить гелиевый завод (по криогенной технологии) в Белогорске (Амурская область) на базе ресурсов Чаяндинского месторождения. Планируется, что завод начнет работать в конце 2018 г. Товарный гелий планируется доставлять в Находку, где уже строится станция по ожижению гелия. А дальше дело за азиатскими покупателями, которые давно ждут российский гелий.

Чтобы уточнить стоимость или получить дополнительную консультацию,
вы можете позвонить по тел.: +7 (495) 545-44-62 или отправить запрос .

Источник

Оцените статью
Разные способы