Кратчайшее расстояние от точки до плоскости способ замены

Определить расстояние от точки D до плоскости треугольника АВС (пример выполнения)

РЕШЕНИЕ: Расстояние от точки до плоскости определяется длиной отрезка перпендикуляра, проведенного из заданной точки к заданной плоскости.

Далее приводится поэтапное графическое решение варианта №17 из данного списка вариантов.

Задачу решаем в следующей последовательности:

Рис.1

Строим плоскость треугольника АВС и точку D по заданным координатам варианта №17 (см. рис.1):

A (70, 45, 60),
B (40, 55, 0),
C (0, 10, 45),
D (65, 0, 15).

Построить свой треугольник онлайн можно перейдя по ссылке.

Рис.2

Затем строим в плоскости треугольника АВС фронталь и горизонталь (см. рис.2).

Фронталь это линия, которая параллельна оси ОХ на горизонтальной плоскости проекции (нижняя часть).
А горизонталь — линия, которая параллельна оси ОХ на фронтальной плоскости проекции (верхняя часть).

Данные линии проводятся через вершины треугольника (через точки А, B, C). В нашем случае через вершину А мы проводим фронталь AF, а через вершину С проводим горизонталь CH.

Рис.3

После того как мы построили фронталь и горизонталь, необходимо из точки D провести перпендикуляр к треугольнику АВС(см. рис.3).

При этом горизонтальная проекция перпендикуляра (от точки D1) должна быть перпендикулярна к горизонтальной проекции горизонтали C1H1.

А фронтальная проекция (от точки D2) перпендикулярна к фронтальной проекции фронтали A2F2;

Рис.4

Теперь необходимо определить точку пересечения перпендикуляра с данной плоскостью, заключив перпендикуляр во вспомогательную плоскость частного положения (см. рис.4).

Перпендикуляр через точку D1 заключаем во вспомогательную плоскость частного положения 1

Примечание: необязательно это делать через точку D1, результат через точку D2 будет идентичным.

Так же необязательно рисовать вспомогательную плоскость частного положения 1, ее можно просто представить, что мы ее там проводим.

После того как мы провели вспомогательную плоскость 1 находим точки пересечения данной плоскости (M1P1) с треугольником АВС. Проецируем их на фронтальную плоскость проекции и получаем точки M2P2.

Потом находим точку пересечения линии M2P2 вспомогательной плоскости с перпендикуляром от точки D2 и отмечаем точку К2. Проецируем точку К2 на горизонтальной плоскости проекции и получаем точку К1.

Рис.5

После того как мы провели перпендикуляр DK, осталось определить его действительную величину способом прямоугольного треугольника (см. рис.5).

Определяем расстояние по вертикали от точки D до точки K на какой-либо плоскости проекций. Например на горизонтальной (нижней) плоскости проекции.

Примечание: доказательство того что расстояние от точки до плоскости можно определить на любой из плоскостей приекции представлено здесь.

Откладываем это расстояние перпендикулярно отрезку DK на противоположной плоскости проекции (в нашем случа на фронтальной) от любой из вершин (например от точки D) и получили нулевую точку D0.

Расстояние от точки D0 до точки K2 и является искомым расстоянием от точки D до плоскости треугольника АВС.

Рис.6

Найдя расстояние от точки до плоскости треугольника АВС, можно начать строить точку симметричную точке D относительно данного треугольника (см. рис.6).

Симметричная точка подразумевает собой точку, которая отстоит от плоскости треугольника АВС на таком же расстоянии, что и точка D, но с противоположной стороны.

Рассмотрим полученный нами отрезок D0K2. В противоположную сторону от точки K2 откладываем отрезок равный D0K2. Ставим точку Е0.

Рис.7

Затем проводим перпендикуляр к линии пенпендикуляра от точки D на рассматриваемой плоскости проекции (см. рис.7).

В нашем случае на фронтальной плоскости проекции к удлиненной линии D2K2. На пересечении ставим точку Е2.
Линии D2K2 и К2Е2 так же равны между собой.

Рис.8

Строим проекцию полученной точки на противоположную плоскость проекции так же на линию перепендикуляра (см. рис.8).

Источник

Определение расстояния от точки до плоскости

Расстояние от точки до плоскости равно длине перпендикуляра, опущенного из точки на плоскость, и в начертательной геометрии определяется графически согласно следующему алгоритму.

  1. Плоскость переводят в проецирующее положение с помощью методов преобразования ортогональных проекций.
  2. Из точки на плоскость опускают перпендикуляр и находят его длину. Направление проекции перпендикуляра определяется на основании теоремы о проецировании прямого угла.

Рассмотрим, как реализуется составленный нами алгоритм на практике. На рисунке ниже представлены графические построения, необходимые для определения расстояния между точкой N и плоскостью α, заданной треугольником ABC.

  • Через вершину B» треугольника A»B»C» проводим проекцию h» горизонтали h. По линиям связи находим h’.
  • Переводим ABC в проецирующее положение. Для этого перпендикулярно h вводим новую фронтальную плоскость П4. Проецируем на неё точку N и треугольник ABC.
  • Из точки N»1 проводим N»11 ⊥ A»11. Длина отрезка N»11 – искомое расстояние между плоскостью треугольника ABC и точкой N.

Требуется определить величину расстояния между точкой K и плоскостью β, заданной следами. В отличие от предыдущей задачи здесь нет необходимости проводить линию уровня, так как её роль выполняет проекция h.

  • Переводим плоскость β в проецирующее положение. Для этого перпендикулярно следу h0β вводим дополнительную фронтальную плоскость П4. На прямой f0β берем произвольную точку E, определяем её проекции E», E’ и E»1. Через E»1 и X0α1 проводим прямую f0β1, которая является следом плоскости β на П4. По линии связи определяем проекцию K»1 точки K.
  • Из K»1 проводим перпендикуляр K»11 в направлении прямой f0β1. Длина отрезка K»11 – величина искомого расстояния от K до β.

Если требуется перевести отрезок KM в исходную систему плоскостей, то это делается с помощью обратных преобразований, как показано на следующем рисунке.

Источник

Расстояние от точки до плоскости

Определить: Расстояние от точки до плоскости.

Дано: Четырехугольник EBCD и точка A.

Таблица значения координат.

Вариант Значения координат
XA YA ZA XB YB ZB XC YC ZC XD YD ZD XE YE ZE
1 90 105 50 60 90 80 10 60 80 40 30 10 90 60 10

Мы уже определяли расстояние от точки до плоскости только способом прямоугольного треугольника. В этом видеоуроке также определим расстояние от точки до плоскости только способом замены плоскостей проекций.

  • Преобразуем плоскость общего положения четырехугольника EBCD в плоскость фронтально-проецирующую.
    • Строим новую ось проекций X14 перпендикулярно горизонтали плоскости четырехугольника EBCD.
    • Координату Z для плоскости П1 снимаем с плоскости П2.

Перпендикуляр А4К4 и есть расстояние от точки до плоскости, т.к. он проецируется в отрезок натуральной величины.

С помощью линий связи строим перпендикуляр к плоскости четырехугольника EBCD. На плоскость П1 координату Z берем с плоскости П4.

Более подробно в видеоуроке по начертательной геометрии в Автокад

Источник

Расстояние от точки до плоскости: определение и примеры нахождения

Данная статья рассказывает об определении расстояния от точки до плоскости. произведем разбор методом координат, который позволит находить расстояние от заданной точки трехмерного пространства. Для закрепления рассмотрим примеры нескольких задач.

Расстояние от точки до плоскости – определение

Расстояние от точки до плоскости находится посредством известного расстояния от точки до точки, где одна из них заданная, а другая – проекция на заданную плоскость.

Когда в пространстве задается точка М 1 с плоскостью χ , то через точку можно провести перпендикулярную плоскости прямую. Н 1 является общей точкой их пересечения. Отсюда получаем, что отрезок М 1 Н 1 – это перпендикуляр, который провели из точки М 1 к плоскости χ , где точка Н 1 – основание перпендикуляра.

Расстоянием от точки до плоскости называют расстояние от заданной точки к основанию перпендикуляра, который провели из заданной точки к заданной плоскости.

Определение может быть записано разными формулировками.

Расстоянием от точки до плоскости называют длину перпендикуляра, который провели из заданной точки к заданной плоскости.

Расстояние от точки М 1 к плоскости χ определяется так: расстояние от точки М 1 до плоскости χ будет являться наименьшим от заданной точки до любой точки плоскости. Если точка Н 2 располагается в плоскости χ и не равна точке Н 2 , тогда получаем прямоугольный треугольник вида М 2 H 1 H 2 , который является прямоугольным, где имеется катет М 2 H 1 , М 2 H 2 – гипотенуза. Значит, отсюда следует, что M 1 H 1 M 1 H 2 . Тогда отрезок М 2 H 1 считается наклонной, которая проводится из точки М 1 до плоскости χ . Мы имеем, что перпендикуляр, проведенный из заданной точки к плоскости, меньше наклонной, которую проводят из точки к заданной плоскости. Рассмотрим этот случай на рисунке, приведенном ниже.

Расстояние от точки до плоскости – теория, примеры, решения

Существует ряд геометрических задач, решения которых должны содержать расстояние от точки до плоскости. Способы выявления этого могут быть разными. Для разрешения применяют теорему Пифагора или подобия треугольников. Когда по условию необходимо рассчитать расстояние от точки до плоскости, заданные в прямоугольной системе координат трехмерного пространства, решают методом координат. Данный пункт рассматривает этот метод.

По условию задачи имеем, что задана точка трехмерного пространства с координатами M 1 ( x 1 , y 1 , z 1 ) с плоскостью χ , необходимо определить расстояние от М 1 к плоскости χ . Для решения применяется несколько способов решения.

Первый способ

Данный способ основывается на нахождении расстояния от точки до плоскости при помощи координат точки Н 1 , которые являются основанием перпендикуляра из точки М 1 к плоскости χ . Далее необходимо вычислить расстояние между М 1 и Н 1 .

Для решения задачи вторым способом применяют нормальное уравнение заданной плоскости.

Второй способ

По условию имеем, что Н 1 является основанием перпендикуляра, который опустили из точки М 1 на плоскость χ . Тогда определяем координаты ( x 2 , y 2 , z 2 ) точки Н 1 . Искомое расстояние от М 1 к плоскости χ находится по формуле M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 + ( z 2 — z 1 ) 2 , где M 1 ( x 1 , y 1 , z 1 ) и H 1 ( x 2 , y 2 , z 2 ) . Для решения необходимо узнать координаты точки Н 1 .

Имеем, что Н 1 является точкой пересечения плоскости χ с прямой a , которая проходит через точку М 1 , расположенную перпендикулярно плоскости χ . Отсюда следует, что необходимо составление уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости. Именно тогда сможем определить координаты точки Н 1 . Необходимо произвести вычисление координат точки пересечения прямой и плоскости.

Алгоритм нахождения расстояния от точки с координатами M 1 ( x 1 , y 1 , z 1 ) к плоскости χ :

  • составить уравнение прямой а, проходящей через точку М 1 и одновременно
  • перпендикулярной к плоскости χ ;
  • найти и вычислить координаты ( x 2 , y 2 , z 2 ) точки Н 1 , являющимися точками
  • пересечения прямой a с плоскостью χ ;
  • вычислить расстояние от М 1 до χ , используя формулу M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 + z 2 — z 1 2 .

В заданной прямоугольной системе координат О х у z имеется плоскость χ , тогда получаем нормальное уравнение плоскости вида cos α · x + cos β · y + cos γ · z — p = 0 . Отсюда получаем, что расстояние M 1 H 1 с точкой M 1 ( x 1 , y 1 , z 1 ) , проведенной на плоскость χ , вычисляемое по формуле M 1 H 1 = cos α · x + cos β · y + cos γ · z — p . Эта формула справедлива, так как это установлено благодаря теореме.

Если задана точка M 1 ( x 1 , y 1 , z 1 ) в трехмерном пространстве, имеющая нормальное уравнение плоскости χ вида cos α · x + cos β · y + cos γ · z — p = 0 , тогда вычисление расстояния от точки до плоскости M 1 H 1 производится из формулы M 1 H 1 = cos α · x + cos β · y + cos γ · z — p , так как x = x 1 , y = y 1 , z = z 1 .

Доказательство теоремы сводится к нахождению расстояния от точки до прямой. Отсюда получаем, что расстояние от M 1 до плоскости χ — это и есть модуль разности числовой проекции радиус-вектора M 1 с расстоянием от начала координат к плоскости χ . Тогда получаем выражение M 1 H 1 = n p n → O M → — p . Нормальный вектор плоскости χ имеет вид n → = cos α , cos β , cos γ , а его длина равняется единице, n p n → O M → — числовая проекция вектора O M → = ( x 1 , y 1 , z 1 ) по направлению, определяемым вектором n → .

Применим формулу вычисления скалярных векторов. Тогда получаем выражение для нахождения вектора вида n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → , так как n → = cos α , cos β , cos γ · z и O M → = ( x 1 , y 1 , z 1 ) . Координатная форма записи примет вид n → , O M → = cos α · x 1 + cos β · y 1 + cos γ · z 1 , тогда M 1 H 1 = n p n → O M → — p = cos α · x 1 + cos β · y 1 + cos γ · z 1 — p . Теорема доказана.

Отсюда получаем, что расстояние от точки M 1 ( x 1 , y 1 , z 1 ) к плоскости χ вычисляется при помощи подстановки в левую часть нормального уравнения плоскости cos α · x + cos β · y + cos γ · z — p = 0 вместо х , у , z координаты x 1 , y 1 и z 1 ,относящиеся к точке М 1 , взяв абсолютную величину полученного значения.

Рассмотрим примеры нахождения расстояния от точки с координатами до заданной плоскости.

Вычислить расстояние от точки с координатами M 1 ( 5 , — 3 , 10 ) к плоскости 2 x — y + 5 z — 3 = 0 .

Решим задачу двумя способами.

Первый способ начнется с вычисления направляющего вектора прямой a . По условию имеем, что заданное уравнение 2 x — y + 5 z — 3 = 0 является уравнением плоскости общего вида, а n → = ( 2 , — 1 , 5 ) является нормальным вектором заданной плоскости. Его применяют в качестве направляющего вектора прямой a , которая перпендикулярна относительно заданной плоскости. Следует записать каноническое уравнение прямой в пространстве, проходящее через M 1 ( 5 , — 3 , 10 ) с направляющим вектором с координатами 2 , — 1 , 5 .

Уравнение получит вид x — 5 2 = y — ( — 3 ) — 1 = z — 10 5 ⇔ x — 5 2 = y + 3 — 1 = z — 10 5 .

Следует определить точки пересечения. Для этого нежно объединить уравнения в систему для перехода от канонического к уравнениям двух пересекающихся прямых. Данную точку примем за Н 1 . Получим, что

x — 5 2 = y + 3 — 1 = z — 10 5 ⇔ — 1 · ( x — 5 ) = 2 · ( y + 3 ) 5 · ( x — 5 ) = 2 · ( z — 10 ) 5 · ( y + 3 ) = — 1 · ( z — 10 ) ⇔ ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0

После чего необходимо разрешить систему

x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 2 x — y + 5 z — 3 = 0 ⇔ x + 2 y = 1 5 x — 2 z = 5 2 x — y + 5 z = 3

Обратимся к правилу решения системы по Гауссу:

1 2 0 — 1 5 0 — 2 5 2 — 1 5 3

1 2 0 — 1 0 — 10 — 2 10 0 — 5 5 5

1 2 0 — 1 0 — 10 — 2 10 0 0 6 0 ⇒ ⇒ z = 0 6 = 0 , y = — 1 10 · 10 + 2 · z = — 1 , x = — 1 — 2 · y = 1

Получаем, что H 1 ( 1 , — 1 , 0 ) .

Производим вычисления расстояния от заданной точки до плоскости. Берем точки M 1 ( 5 , — 3 , 10 ) и H 1 ( 1 , — 1 , 0 ) и получаем

M 1 H 1 = ( 1 — 5 ) 2 + ( — 1 — ( — 3 ) ) 2 + ( 0 — 10 ) 2 = 2 30

Второй способ решения заключается в том, чтобы для начала привести заданное уравнение 2 x — y + 5 z — 3 = 0 к нормальному виду. Определяем нормирующий множитель и получаем 1 2 2 + ( — 1 ) 2 + 5 2 = 1 30 . Отсюда выводим уравнение плоскости 2 30 · x — 1 30 · y + 5 30 · z — 3 30 = 0 . Вычисление левой части уравнения производится посредствам подстановки x = 5 , y = — 3 , z = 10 , причем нужно взять расстояние от M 1 ( 5 , — 3 , 10 ) до 2 x — y + 5 z — 3 = 0 по модулю. Получаем выражение:

M 1 H 1 = 2 30 · 5 — 1 30 · — 3 + 5 30 · 10 — 3 30 = 60 30 = 2 30

Когда плоскость χ задается одним из способов раздела способы задания плоскости, тогда нужно для начала получить уравнение плоскости χ и вычислять искомое расстояние при помощи любого метода.

В трехмерном пространстве задаются точки с координатами M 1 ( 5 , — 3 , 10 ) , A ( 0 , 2 , 1 ) , B ( 2 , 6 , 1 ) , C ( 4 , 0 , — 1 ) . Вычислить расстяние от М 1 к плоскости А В С .

Для начала необходимо записать уравнение плоскости, проходящее через заданные три точки с координатами M 1 ( 5 , — 3 , 10 ) , A ( 0 , 2 , 1 ) , B ( 2 , 6 , 1 ) , C ( 4 , 0 , — 1 ) .

x — 0 y — 2 z — 1 2 — 0 6 — 2 1 — 1 4 — 0 0 — 2 — 1 — 1 = 0 ⇔ x y — 2 z — 1 2 4 0 4 — 2 — 2 = 0 ⇔ ⇔ — 8 x + 4 y — 20 z + 12 = 0 ⇔ 2 x — y + 5 z — 3 = 0

Отсюда следует, что задача имеет аналогичное предыдущему решение. Значит, расстояние от точки М 1 к плоскости А В С имеет значение 2 30 .

Нахождение расстояния от заданной точки на плоскости или к плоскости, которым они параллельны, удобнее, применив формулу M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 — p . Отсюда получим, что нормальные уравнения плоскостей получают в несколько действий.

Найти расстояние от заданной точки с координатами M 1 ( — 3 , 2 , — 7 ) к координатной плоскости О х у z и плоскости, заданной уравнением 2 y — 5 = 0 .

Координатная плоскость О у z соответствует уравнению вида х = 0 . Для плоскости О у z оно является нормальным. Поэтому необходимо подставить в левую часть выражения значения х = — 3 и взять модуль значения расстояния от точки с координатами M 1 ( — 3 , 2 , — 7 ) к плоскости. Получаем значение, равное — 3 = 3 .

После преобразования нормальное уравнение плоскости 2 y — 5 = 0 получит вид y — 5 2 = 0 . Тогда можно найти искомое расстояние от точки с координатами M 1 ( — 3 , 2 , — 7 ) к плоскости 2 y — 5 = 0 . Подставив и вычислив, получаем 2 — 5 2 = 5 2 — 2 .

Ответ: Искомое расстояние от M 1 ( — 3 , 2 , — 7 ) до О у z имеет значение 3 , а до 2 y — 5 = 0 имеет значение 5 2 — 2 .

Источник

Читайте также:  Лечение народными способами при цистите
Оцените статью
Разные способы