Конвективный теплообмен
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Полезное
Смотреть что такое «Конвективный теплообмен» в других словарях:
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — перенос теплоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и ее теплопроводностью. В невесомости конвективный теплообмен отсутствует … Большой Энциклопедический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — необратимый процесс переноса теплоты в движущихся средах с неоднородным полем темп ры, обусловленный совместным действием конвекции и молекулярного движения. Наиб. важный для практики случай К. т. между движущейся средой и поверхностью её раздела … Физическая энциклопедия
конвективный теплообмен — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN convective heat transfer … Справочник технического переводчика
конвективный теплообмен — перенос теплоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и её теплопроводностью. * * * КОНВЕКТИВНЫЙ ТЕПЛООБМЕН КОНВЕКТИВНЫЙ ТЕПЛООБМЕН,… … Энциклопедический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — процесс передачи энергии в форме теплоты в неравномерно нагретой жидкой, газообразной или сыпучей среде, осуществляющийся вследствие движения среды и ее теплопроводности. Конвективный теплообмен, протекающий на границе раздела двух фаз.,… … Металлургический словарь
Конвективный теплообмен — 1.4. Конвективный теплообмен Источник: ТСН 301 23 2000 ЯО: Теплозащита зданий жилищно гражданского назначения 1.5. Конвективный теплообмен Источник … Словарь-справочник терминов нормативно-технической документации
конвективный теплообмен — Теплообмен, обусловленный совместным действием конвективного и молекулярного переноса теплоты … Политехнический терминологический толковый словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — процесс теплообмена в неравномерно нагретой жидкой, газообразной или сыпучей среде, осуществляющийся вследствие движения среды и её теплопроводности. К. т., протекающий на границе раздела двух фаз, называется конвективной теплоотдачей. К. т.… … Большой энциклопедический политехнический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — перенос теп лоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и её теплопроводностью … Естествознание. Энциклопедический словарь
конвективный теплообмен — перенос теплоты с поверхности (на поверхность) ограждающей конструкции омывающим ее воздухом или жидкостью. (Смотри: МГСН 2.01 99. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению.) Источник: Дом: Строительная… … Строительный словарь
Источник
Передача теплоты конвекцией
Конвекция — это перенос теплоты движущейся массой жидкости или газа из области с одной температурой в область с другой температурой. Конвекция всегда сопровождается теплопроводностью, этот процесс называют конвективным теплообменом. Теплоотдача конвекцией зависит от большого числа различных факторов:
— характера конвекции — конвекции свободной, происходящей под действием внутренних сил, возникающих вследствие разности плотностей нагретых и холодных частиц, или вынужденной, происходящей под действием внешних сил — ветра, насоса, вентилятора;
— режима течения жидкости — течения при малых скоростях параллельно-струйчатого характера без перемешивания (ламинарный режим) или течения при больших скоростях (течение неупорядоченное, вихревое), когда в теплоносителе наблюдаются вихри, перемещающие жидкость не только в направлении движения, но и в поперечном направлении (турбулентный режим);
— скорости движения теплоносителя;
— направления теплового потока (нагревание или охлаждение);
— физических свойств теплоносителя — коэффициента теплопроводности, теплоемкости, плотности, вязкости, температурного напора, зависящего от разности температур теплоносителя и поверхности стенок;
— площади поверхности стенки F, омываемой теплоносителем;
— формы стенки, ее размеров и других факторов.
Расчет процесса конвективного теплообмена производят на основе закона Ньютона, который выражается формулой:
| (8) |
где W — количество переданной теплоты, Дж;
α — коэффициент теплоотдачи, Вт/(м 2 ·К);
F — площадь поверхности теплообмена, м 2 ;
t и tc l — температуры соответственно жидкости и стенки, К;
Коэффициент теплоотдачи а показывает, какое количество теплоты передается от жидкости (греющего тела) к стенке или наоборот в единицу времени через единицу поверхности при разности температур между поверхностью стенки и жидкостью в 1 К.
Разделив обе части уравнения (8) на Ft, получим выражение для плотности теплового потока при теплоотдаче:
| (9) |
| (10) |
где 1/α — термическое сопротивление теплоотдачи.
Коэффициент теплоотдачи а определяют опытным или аналитическим методом. Аналитический метод весьма сложен и не обеспечивает нужной точности.
Сложный теплообмен
Рассмотренные выше явления передачи теплоты протекают обычно одновременно. Например, когда тело (поверхность нагрева) омывается газом, то наряду с конвективным теплообменом имеется теплообмен излучением (радиацией). В системах отопления, вентиляции и кондиционирования наиболее часто встречающийся случай теплообмена — это передача теплоты от греющей жидкости, нагреваемой среде (воздух, жидкость) через разделительную стенку (рисунок 7, а). В этом случае вначале происходит теплоотдача от греющей жидкости со средней температурой t1 стенке с температурой tc l . Далее теплота передается в результате теплопроводности стенки ее противоположной поверхности с температурой tc ll и, наконец, эта поверхность стенки отдает теплоту нагреваемой среде со средней температурой t2. Тогда плотность теплового потока для однослойной стенки с учетом формул (6) и (10) будет
| (11) |
где α1 — коэффициент теплоотдачи от греющей жидкости левой (см. рисунок 7, а) поверхности стенки;
δ — толщина стенки;
λ — коэффициент теплопроводности разделительной стенки;
α2 — коэффициент теплоотдачи от правой поверхности стенки, нагреваемой среде.
Рисунок 7 — Передача теплоты от греющей жидкости, нагреваемой среде через разделительную стенку: а — однослойную; б – многослойную
обозначить буквой k, то формула для подсчета количества теплоты, передаваемой через площадь F за время τ, примет следующий вид:
| (12) |
Величину k называют коэффициентом теплопередачи [измеряется в Вт/(м 2 ·К)], а обратную ему величину — полным термическим сопротивлением теплопередачи
Если разделительная стенка состоит из нескольких слоев, например из трех (рисунок 7, б), то плотность теплового потока с учетом формул (7) и (10) будет
| (13) |
В многочисленных теплообменных устройствах, применяемых в любой области промышленности, в том числе в системах отопления, вентиляции и кондиционирования, основным рабочим процессом является теплообмен между теплоносителями. Такой теплообмен называют теплопередачей.
Поэтому задание № 3 по сути соответствует случаю передачи теплоты от греющего газа к кипящей воде через разделительную однослойную (коэффициент теплопроводности материала стенки λ = 50 Вт/м∙К и толщина стенки δ = 10 мм.) и многослойную стенку (поверхность нагрева парового котла со стороны дымовых газов покрылась слоем сажи толщиной δс и со стороны воды слоем накипи толщиной δн (соответственно, коэффициент теплопроводности сажи λс = 0,08 Вт/м∙К и накипи λн = 0,6 Вт/м∙К)). Далее необходимо сравнить результаты расчетов для обоих случаев и определить уменьшение тепловой нагрузки в процентах, построить график распределения температур (См. рисунок 7, а и б).
1. Андрижиевский, А.А. Энергосбережение и энергетический менеджмент: учебное пособие / А.А. Андрижиевский, В.И. Володин. – Минск: Высшая школа, 2005. – 294 с.
2. Быстрицкий, Г.Ф. Основы энергетики [Текст] /Г.Ф.Быстрицкий – М.: Изд-во ИНФРА, 2007. – 278 с.
3. Полонский В.М. Энергосбережение: учебное пособие / В.М. Полонский – М.: Издательство Ассоциации строительных вузов, 2005. – 160с.
Источник
Конвективный теплообмен
Конвекция – это перемещение тепла за счет перемещения конкретных макроскопических объемов жидкости или газа. Конвекция всегда сопровождается передачей тепла посредством теплопроводности.
Под конвективным теплообменом понимают процесс распространения тепла в жидкости (или газе) от поверхности твердого тела или к поверхности его одновременно конвекцией и теплопроводностью. Такой случай распространения тепла называют также теплоотдачей соприкосновением или просто теплоотдачей.
Перенос тепла конвекцией тем интенсивнее, чем более турбулентно движется вся масса жидкости и чем энергичней осуществляется перемешивание ее частиц. Т. о. Конвекция связана с механическим переносом тепла и сильно зависит от гидродинамических условий течения жидкости.
По природе возникновение различают два вида характера движение жидкости:
1. Свободное движение жидкости (т. е. естественная конвекция) – возникает вследствие разности плотностей нагретых и холодных частиц жидкости и определяется физическими свойствами жидкости, ее объемом и разностями температур нагретых и холодных частиц.
2. Вынужденное (принудительное) движение жидкости (принудительная конвекция) возникает под действием какого-либо постороннего возбудителя, например насоса, вентилятора. Оно определяется физическими свойствами жидкости, ее скоростью, формой и размерами канала, в котором осуществляется движение.
В общем случае наряду с вынужденным движением одновременно может развиваться и свободное. Процессы теплоотдачи неразрывно связаны с условиями движения жидкости. Как известно, имеются два основных режима течения: ламинарный и турбулентный. При ламинарном режиме течение имеет спокойный, струйчатый характер. При турбулентном – движение неупорядоченное, вихревое. Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса тепла.
Механизм передачи тепла конвекцией
Рассмотрим процесс передачи тепла конвекцией и теплопроводностью от поверхности твердого тела к омывающему ее потоку жидкости (или газа) либо, наоборот, от потока к твердому телу, например стенке теплообменного аппарата.
В ядре потока перенос тепла осуществляется одновременно теплопроводностью и конвекцией. Механизм переноса тепла в ядре потока при турбулентном движении среды характеризуется интенсивным перемешиванием за счет турбулентных пульсаций, которое приводит к выравниванию температур в ядре до некоторого среднего значения tср (tср1 или tср2). Соответственно перенос тепла в ядре определяется, прежде всего характером движения теплоносителя, но зависит также от его тепловых свойств. По мере приближения к стенке интенсивность теплоотдачи падает. Это объясняется тем, что вблизи стенки образуется тепловой пограничный слой, подобный гидродинамическому пограничному слою. Т. о. по мере приближения к стенке все большее значение приобретает теплопроводность, а в непосредственной близости от стенки (в весьма тонком ламинарном тепловом подслое) перенос тепла осуществляется только теплопроводностью.
Тепловым пограничным подслоем считается пристенный слой, в котором влияние турбулентных пульсаций на перенос тепла становится пренебрежимо малым.
Следует отличать, что интенсивность т/отдачи определяется, в основном, термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказывается определяющим.
При турбулентном движении жидкости теплообмен происходит значительно интенсивнее, чем при ламинарном. С повышением турбулентности потока перемешивание усиливается, что приводит к уменьшению толщины пограничного слоя и увеличению количества передаваемого тепла.
Одной из практических задач в технике является развитие турбулентности при движении теплоносителей.
Цель развития турбулентности в теплообменной аппаратуре – снижение толщины теплового пограничного подслоя, в этом случае процесс лимитируется только конвекцией.
Количество тепла, переносимого молекулярной теплопроводностью определяется по закону Фурье:
(1)
t – температура на границе
Тепло, переносимое конвекцией определяют по закону Ньютона или закону теплоотдачи:
(2)
Количество тепла, передаваемое поверхностью F, имеющей температуру tст окружающей среде с температурой tср прямопропорционально поверхности теплообмена и разности температур м/у tст и tср окружающей среды.
За счет турбулентных пульсаций идет выравнивание температур и можно приравнять .
Приравняв (1) и (2) уравнение получим:
, но
величина трудноопределимая.
коэффициент теплоотдачи, [Вт/м 2 ·К] – показывает, какое количество тепла передается от 1 м 2 поверхности стенки к жидкости при разности температур между стенкой и жидкостью в один градус.
Величина характеризует интенсивность переноса тепла между поверхностью тела, например твердой стенки и окружающей средой (капельной жидкостью или газом).
Процесс теплоотдачи является сложным процессом, а коэффициент теплоотдачи является сложной функцией различных величин, характеризующих этот процесс.
Коэффициент теплоотдачи зависит от следующих факторов:
— скорости жидкости , ее плотности
и вязкости
, т. е. переменных, определяющих режим течения жидкости;
— тепловых свойств жидкости (уд. теплоемкости Ср, теплопроводности ), а также коэффициента объемного расширения
;
— геометрических параметров – формы и определяющих размеров стенки (для труб – их диаметр d и длина L), а также шероховатости стенки.
Т. о. .
ЛУЧЕИСПУСКАНИЕ
А. или тепловое излучение свойственно всем телам, температура которых отлична от 0 0 К.
Длины волн теплового излучения лежат в инфракрасной части спектра и имеют длину 0,8 ÷ 40 мкм. И поскольку отличаются от других электромагнитных волн только длиной, то и подчиняются законам квантовой механики.
Интенсивность теплового излучения возрастает с повышением температуры тела, и при высоких температурах (примерно, при t 600 0 C) лучистый теплообмен м/у телами приобретает доминирующее значение
Дата добавления: 2017-08-01 ; просмотров: 5546 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник