Конспект урока способ группировки 7 класс алгебра

Способ группировки
план-конспект урока по алгебре (7 класс) на тему

Скачать:

Вложение Размер
sposob_gruppirovki_7_klass.docx 19.58 КБ

Предварительный просмотр:

Разложение многочлена на множители способом группировки

Учитель математики: Березкина Ирина Александровна

  • способствовать деятельности учащихся по самостоятельному выводу алгоритма разложения многочлена на множители способом группировки на основании применения переместительного и сочетательного законов сложения и распределительного закона умножения;
  • продолжать работу по формированию у каждого учащегося личной потребности в последовательной деятельности, связанной с “открытием” нового правила, развитию творческих способностей учащихся;
  • продолжить работу по формированию ответственности учащихся за свою деятельность на уроке, умений самостоятельно добывать знания, овладению способами и критериями самоконтроля и самооценки.

Тип урока : изучение нового, проблемный.

Методы обучения : проблемный, частично-поисковый.

Форма организации учебной деятельности : групповая, фронтальная, индивидуальная.

1 слайд тема нашего урока Разложение многочлена на множители способом группировки.

Цель урока: научиться раскладывать многочлен на множители способом группировки.

Сегодня урок пройдет в не совсем обычной форме. Вы будете не просто учениками 7 класса, а членами Академии Точных Наук. Как и в любой Академии решается множество проблем, так и мы сегодня должны будем выполнить ряд задач, в решении которых нам помогут знания по теме: «Разложение многочлена на множители».

2 слайд план урока:

1) Математический диктант

2) письмо от астрономов

3) письмо от археологов

4) письмо от работников Берлинского музея

3 слайд девиз урока: Достижения крупные – людям никогда не давались легко!

Прежде чем мы приступим к решению задач, нужно проверить, насколько вы готовы к этому. В этом нам поможет главный теоретик нашей Академии филин, на вопросы и задания которого вы должны ответить.

1. Актуализация опорных знаний.

Вынести за скобки общий множитель:

5) 8m 2 n – 4mn 3

2. Когда мы выносим общий множитель за скобки, мы представляем многочлен в виде произведения множителей. Для чего это может быть нужно? (Чтобы решить уравнение или сократить дробь).

Теперь мы можем приступить к решению проблем, которые стоят перед нашей Академией.

4 слайд в адрес Академии пришло письмо от астрономов, исследующих поверхность Марса. Не так давно на этой самой поверхности был обнаружен участок с таинственными символами, которые астрономы никак не могут разгадать. Давайте поможем им.

Решите уравнение: 5х 2 + 5х = 0 у доски

5 x (x+1) =0 , x=0 или x=-1.

3. Мотивирование необходимости разложения многочлена на множители.

Решите уравнение: x 2 +3x +6 +2x =0

Создается проблемная ситуация: задача знакома на первый взгляд, но не решается. Мы знаем, что удобно решать уравнение, в правой части которого 0, раскладывая его левую часть на множители.

— Есть ли общий множитель у всех слагаемых? (Нет)

— Значит, этот способ разложения на множители не подходит.

Постановка учебной задачи: научиться раскладывать многочлен на множители другим способом.

1) Эвристическая беседа.

Рассмотрим многочлен 5x +5y +m x +my. (запись на доске)

— Есть ли общий множитель у всех слагаемых?

Применим “метод пристального взгляда”. Что вы увидели?

(Есть общий множитель 5 у первого и второго слагаемых и общий множитель m у третьего и четвертого слагаемых.)

— Давайте объединим их в группы. — Каким законом сложения воспользуемся? (Сочетательным)

— Что можно сделать с общим множителем в каждой группе? (Вынести его за скобки) .

— Каким законом умножения воспользуемся? (Распределительным)

— Сколько сейчас получилось слагаемых? (Два)

— Что интересного заметили в получившемся выражении? (Есть один общий множитель (х+у) )

— Вынесем его за скобки.

— Что мы получили? (Произведение)

— Значит, многочлен представили в виде произведения. Каким способом? (Объединяя слагаемые в группы)

— Поэтому этот способ называется способом группировки.

— Нельзя ли этот же многочлен разложить на множители, группируя слагаемые иначе? Какие законы сложения и умножения будем использовать?

(5x +5y ) +(m x +my) = x(5 +m) + y (5 +m) =(x +y) (5 +m)

— Какой получился результат? (Такой же, как и в первом случае)

5 слайд алгоритм разложения выгладит так:

а) выполнить группировку слагаемых, имеющих общий множитель;

в) отдельно в каждой группе найти общий множитель и вынести его за скобки;

с) в получившемся выражении найти общий множитель и вынести его за скобки.

Этот алгоритм поможет учащимся в дальнейшей работе на этом и последующих уроках.

Замечательно! Я думаю, астрономы будут очень довольны. Возможно, мы скоро получим ответ на вопрос: «Есть ли жизнь на Марсе».

2) Отработка правила.

Работая с алгоритмом, учащиеся действуют поэтапно, отдавая себе отчет, что надо сделать и почему. Происходит осознание нового правила, его осмысление и запоминание.

6 слайд а вот и другое письмо.

Археологи, исследуя гробницы Египта, обнаружили в одной из пирамид дверь, для открытия которой нужно разгадать код. Помогите археологам. Вот этот код:

а) Фронтальная работа с пооперационным контролем. (1 ученик у доски))

ах+ ау- х – у = (ах + ау) + (-х – у) = а(х + у) – (х + у) = (х + у)(а – 1)

ав-8а-вх+8х = (ав – вх) + (-8а + 8х) = в(а – х) + 8(-а + х) = (а – х)(в – 8) (-1 выносим за скобку)

x 2 m- x 2 n + y 2 m- y 2 n = (m – n)(х 2 + у 2 )

потрясающе! Теперь археологи наконец – то откроют эту загадочную дверь и возможно, найдут множество сокровищ.

7 слайд А мы переходим к следующему письму. Оно к нам пришло из Германии. Просматривая старые архивы, работники Берлинского музея обнаружили обрывки рукописи, которые вам предстоит восстановить.

б) Дифференцированные задания по уровням. (работа в парах)

Ситуация выбора в процессе выполнения самостоятельной работы. Учащиеся могут выбрать один из предложенных вариантов, который кажется им соответствующим их уровню знаний, то есть вырабатывается навык самооценки.

А. Задания нормативного уровня.

1) 7а-7в+ аn – b n = (а – в)(7 + n)

2) x y+ 2y+2x+4 = (у + 2)(х + 2)

3) y 2 a-y 2 b+x 2 a- x 2 b = (а – в)(у 2 + х 2 )

Б. Задания компетентного уровня

1) x y+ 2y-2x-4 = (х + 2)(у – 2)

2) 2сх – су – 6х + 3у = (2х – у)(с – 3)

3) х 2 +x y+ xy 2 +y 3 = (х + у)(х + у 2 )

С. Задания творческого уровня

1) x 4 +x 3 y- xy 3 -y 4 = (х +у)(х 3 – у 3 )

2) ху 2 – ву 2 – ах + ав + у 2 – а = (у 2 – а)(х – в + 1)

3) х 2 – 3х + 6 – 2х = (х – 2)(х – 3)

8 слайд В результате получили: «Числа не управляют миром, но показывают, как управляется мир». И.В.Гете.

Посмотрите, какая замечательная фраза. Работники музея будут очень вам благодарны за оказанную помощь. Молодцы! Теперь эта фраза войдет в историю, и мы в этом непосредственно участвовали.

9 слайд Подведение итогов. Рефлексия

— Какая задача состояла перед нами в начале урока? (научиться раскладывать многочлен на множители способом группировки)

Можно ли считать, что мы ее решили?

Вернемся к нашему уравнению: ( у доски учитель)

Ответ: х=-3 или х=-2.

С каким настроением вы уходите с урока — покажите с помощью выбора смайлика:

Если вам понравился урок и вы чувствуете, что тему поняли, то выбирайте смайлик счастья.

Если урок понравился, но не все еще понятно, то смайлик печали.

Если и урок не понравился, и все не понятно, то плачущий смайлик.

10 слайд Домашнее задание

П. 30, № 710, 712, 713 стр. 142 ( Алгебра: учебник для 7 класса под редакцией С. А. Теляковского, М., 2007) .

  1. Поурочные планы по математике в 7 классе, З.С.Стромова, Волгоград 2008г
  2. Ключ к пониманию алгебры 7-9 класс, М.Б.Волович, Москва 1997г

По теме: методические разработки, презентации и конспекты

Алгебра 7 класс. Урок на тему: «Разложение многочленов на множители способом группировки».

Алгебра 7 класс. Урок на тему: «Разложение многочленов на множители способом группировки». Урок с использованием информационных технологий, технологий личностно-ориентированного и проблемного об.

Разложение многочлена на множители способом группировки 7 класс

Урок с использованием ЭОР.

урок по теме «Разложение многочлена на множители способом группировки» 7 класс

Третий урок в теме, конспект урока с элементами исследования и презентация.

Разложение многочлена на множители способом группировки.

данный урок является уроком отработки навыков разложения многочлена на множители способом группировки и проверки первичного усвоения нового материала.

технологическая карта урока «Способ группировки»

Первый урок по теме, формирование понятия.

Урок по теме:»Способ группировки»

Разложение многочлена на множители способом группировки

Цель урока: научиться раскладывать многочлен на множители способом группировки. Сегодня урок пройдет в не совсем обычной форме. Вы будете не просто учениками 7 класса, а членами Академии Точных Наук.

Источник

Конспект урока «Способ группировки» 7 класс

Учитель: Самигуллина З. Р.

Тема: Разложение многочлена на множители. Метод группировки.

1) выработать у учащихся умения выполнять разложение многочленов на множители способом группировки,

2) выработать у учащихся умения применять полученные знания для рационализации вычислений, решения уравнений, доказательства тождеств.

1) формирование алгоритмического мышления;

2) формирование у учащихся навыков умственного труда — планирование своей работы, поиск рациональных путей ее выполнения, критическую оценку результатов;

1) эстетическое воспитание учащихся;

2) формирование представлений о математике как части общечеловеческой культуры.

Тип урока: изучение нового материала, проблемный.

Методы обучения: проблемный, частично-поисковый.

Форма организации учебной деятельности : групповая, фронтальная, индивидуальная.

Оборудование: персональный компьютер, мультимедийный проектор, экран, Презентация Power Point (Приложение 1) .

Актуализация знаний. Проверка домашнего задания.

Мотивация. Постановка учебной задачи.

Изучение нового материала.

Закрепление изученного материала.

Организация класса. Здравствуйте! Присаживайтесь. Как ваши дела? Как настроение? Рада видеть вас на уроке. Надеюсь, вы готовы к получению новых знаний? Итак, давайте начнем.

Актуализация знаний. Проверка домашнего задания.

Чтобы проверить, как вы усвоили прошлую тему и выполнили домашнее задание, я предлагаю вам ответить на несколько вопросов.. (слайд__)

Что значит разложить многочлен на множители ? (Представить в виде произведения)

Какие способы разложения многочлена на множители вы знаете?(вынесение общего множителя за скобки)

Сформулируйте алгоритм разложения многочлена на множители способом вынесения общего множителя за скобки . Что необходимо сделать, чтобы многочлен представить в виде произвдения?

Молодцы! А теперь посмотрим на экран и устно решим примеры. (слайд__)

Вынесите за скобки общий множитель:

Молодцы! Вспомнили алгоритм, и правильно его применили.

Я вам раздам небольшие листочки. Подпишите их, и сделаем небольшой письменный тест. Можете сразу, не записывая пример, писать ответы. Первый вариант выполняет задания в левом столбце. Второй вариант выполняет задания в правом столбце.

15х + 10 y ; 9 n + 6 m ;

a 2 – ab ; b ² — ab ;

n (7- m ) + k (7– m ); b ( a +5) – c ( a +5);

8 m 2 n – 4 mn 3 ; 20 x ³ y ² + 4 x ² y ³;

a ( b — c )+3( c — b ). 6( m — n )+ s ( n — m ).

Делаем проверку. За 5 правильных примеров ставим оценку «5», за 4 – «4», и за 3 – «3». Все ли довольны своими оценками? Поняли ли вы свои ошибки, необходимо ли разобрать примеры еще раз?

Мотивация. Постановка учебной задачи. (слайд__)

А теперь, я предлагаю вам решить несколько уравнений. Кто объяснит, как нужно решить первое уравнение? Умеем ли мы решать такие?

3) x 2 + 3x + 6 + 2x = 0.

(В первом уравнении приравниваем каждый множитель к нулю, и решаем два линейных уравнения).

(Для решения второго уравнения необходимо разложить на множители многочлен. Для этого общий множитель выносим на скобки. И решаем по аналогии с первым уравнением).

С решением третьего уравнения у нас появились трудности. Задача знакома на первый взгляд, но не решается. Мы знаем, что удобно решать уравнение, в правой части которого 0, раскладывая его левую часть на множители.

— Есть ли общий множитель у всех слагаемых? (Нет)

— Значит, этот способ разложения на множители нам не подходит? (Да)

— Как вы думаете чему мы должны сегодня научиться?

Постановка учебной задачи: Мы должны научиться раскладывать многочлен на множители другим способом.

Изучение нового материала. (слайд__)

Давайте пристально посмотрим на левую часть уравнения. Что-нибудь вы видите?

Я предлагаю объединить в группы по 2 слагаемых. Иначе говоря — сгруппировать:

(x 2 + 3x) + (6 + 2x) = 0; (применяем сочетательный закон сложения)

Теперь у одночленов в скобках появились общие множители. В первой скобке это Х. его мы можем вынести за скобки, т.е. разложить на множители первую сумму. То же самое делаем со второй скобкой. Тут уже выносим за скобки 2. в итоге, мы получаем сумму одночленов, которые имеют общий множитель (х+3).

Т.к. в скобках стоит знак +, то мы можем поменять местами х и 3. данный множитель, мы также выносим за скобки.

Что мы получили? (Произведение).

Значит, каким способом мы многочлен представили в виде произведения? (Объединяя слагаемые в группы)

Поэтому этот способ называется способом группировки.

Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена.

Сформулируем алгоритм: Чтобы разложить многочлен на множители способом группировки, нужно:

1) выполнить группировку слагаемых, имеющих общий множитель;

2) отдельно в каждой группе найти общий множитель и вынести его за скобки;

3) в получившемся выражении найти общий множитель и вынести его за скобки.

Закрепление изученного материала .

Рассмотрим пример (слайд__), в котром н еобходимо разложить на множители многочлен:

Первый способ группировки:

xy -6+3х-2 y =( xy -6)+(3 x -2 y ). Объединяем в группу первые два члена и третий и четвертый члены многочлена. Есть ли в каждой скобке общий множитель? нет. значит наша группировка неудачна.

Второй способ группировки:

Объединяем первый и третий член, второй и четвертый. Есть ли у них общие множители? Выносим за скобки. Продолжаем раскладывать.

Третий способ группировки:

Объединяем первый и четвертый члены, второй и третий. Выносим за скобки общие множители. Раскладываем на множители.

= y ( x -2)+3( x -2)=( x -2)( y +3). Группировка также выбрана удачно, мы получаем ответ. Давайте сравним ответ второго и третьего способов.

Ответ: xy -6+3х-2 y =( x -2)( y +3).

Как видите, не всегда с первого раза группировка оказывается удачной.

Если группировка оказалась неудачной, откажитесь от нее и ищите иной способ .

Рассмотрим еще несколько примеров на разложение множители, применяя метод группировки (слайд__) Для этого я предлагаю в парах разложить на множители примеры несколькими способами. Первый ряд выполняет первый пример. Второй ряд – второй, и третий ряд – третий пример.

а b — 8а – b х + 8х;

x 2 m — x 2 n + y 2 m — y 2 n.

А теперь, на тех же листочках, каждому предлагаю выбрать один из трех групп заданий.

А. Задания легкого уровня.

1) 7а — 7в + аn – bn

2) xy + 2 y + 2 x + 4

3) y 2 a — y 2 b + x 2 a — x 2 b

Б. Задания среднего уровня

1) xy + 2y — 2x — 4

2) 2сх – су – 6х + 3у

3) х 2 + xy + xy 2 + y 3

С. Задания сложного уровня

1) x 4 + x 3 y — xy 3 — y 4

2) ху 2 – ву 2 – ах + ав + у 2 — а

Выполняете задания и сдаете мне. Я их проверю, и на следующем уроке, по вашему желанию, выставлю оценки. Также разберем все ошибки и недочеты.

Домашнее задание (слайд__): №______________ Посмотрите, все ли понятно по домашнему заданию. У кого есть вопросы?

Итог урока (слайд__). Подведем итоги урока.

а) С каким новым способом разложения многочлена на множители вы познакомились сегодня?

б) В чем он заключается?

в) К каким многочленам обычно применяют способ группировки?

8. Рефлексия (слайд__)

Я предлагаю вам ответить на вопросы:

Комфортно ли вам было на уроке?

Поняли ли вы материал урока?

С какими трудностями столкнулись?

Требовалась ли вам помощь:

в) соседа по парте?

Что необходимо повторить для успешной работы на следующем уроке?

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 832 человека из 77 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 297 человек из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 609 человек из 76 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-899071

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Шойгу предложил включить географию в число вступительных экзаменов в вузы

Время чтения: 1 минута

В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана

Время чтения: 1 минута

Минобрнауки разработало концепцию преподавания истории российского казачества

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

В Осетии студенты проведут уроки вместо учителей старше 60 лет

Время чтения: 1 минута

Путин попросил привлекать родителей к капремонту школ на всех этапах

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Читайте также:  Способ ремонта бескамерных шин
Оцените статью
Разные способы