Конспект 8 класса способы изменения внутренней энергии тела

Урок 8 классе. Способы изменения внутренней энергии.
план-конспект урока по физике (8 класс) по теме

Авяснить условия, при которых внутренняя энергия изменяется. Дать понятие теплопередачи.

Скачать:

Вложение Размер
sposoby_izmneniya_vnutrenney_energii.doc 52.5 КБ

Предварительный просмотр:

Урок 3.3. «Способы изменения внутренней энергии»

  • Выяснить условия, при которых внутренняя энергия изменяется;
  • Дать понятие теплопередачи.

Оборудование : сосуды, спиртовка, эфир, насос, металлическая проволока, мультимедийный проектор, презентация.

  1. Повторение изученного материала (фронтальный опрос). Слайд 3-4
  • Дать определение внутренней энергии.
  • Почему при малых значениях кинетической и потенциальной энергии одной молекулы внутренняя энергия тела достаточно большая величина?
  • Почему внутренняя энергия тела увеличивается с увеличением средней скорости движения молекул тела?
  • Что происходит с внутренней энергией тела при понижении температуры?
  • Почему внутренняя энергия тела изменяется при деформации тела?
  • Может ли тело, обладая внутренней энергией, не иметь механическую энергию? Приведите примеры.
  • Может ли тело иметь механическую энергию, но не иметь внутренней.

3. Объяснение нового материала.

Внутренняя энергия тела не является какой-то постоянной величиной. У одного и того же тела она может изменяться. Изменяется внутренняя энергия тела при изменении скорости движения молекул.

А сейчас выясним с вами, каким способом можно увеличить или уменьшить скорость движения молекул.

Нальем в стеклянный сосуд эфира и закроем пробкой. Трубку обовьем веревкой и начнем быстро двигать ее то в одну, то в другую сторону. Через некоторое время эфир закипит, и пар вытолкнет пробку.

Вопрос: что произойдет с внутренней энергией эфира?

Ответ: внутренняя энергия увеличиться, он нагрелся и закипел.

Вопрос: в результате чего увеличилась внутренняя энергия?

Ответ: в результате совершения работы при натирании трубки веревкой.

Вопрос: какой можно сделать вывод из данного опыта.

Вывод: внутреннюю энергию тела можно увеличить, совершая над телом работу .

Именно такой способ добычи огня использовали наши редки. За счет трения при быстром вращении сухой кусок дерева нагревался более чем на 250°C и загорался.

Опыт 2 Сгибание медной проволоки. (на парте по одной проволоки)

Вопрос: как изменилась температура проволоки в месте сгиба?

Ответ: Проволока нагрелась.

Вопрос: изменилась ли кинетическая энергия частиц, из которых состоит проволока?

Ответ: Да, изменилась.

Вопрос: Что произошло с внутренней энергией проволоки?

Ответ: внутренняя энергия тела увеличилась.

Нагревание тел происходит также при ударах, разгибании и сгибании. Т.е. при деформации.

Рассмотрим следующий опыт .

В толстостенный стеклянный сосуд, закрытый пробкой, накачаем воздух через специальное отверстие в ней. Через некоторое время пробка выскочит из сосуда. В момент, когда пробка выскакивает из сосуда, образуется туман. Воздух в сосуде в сосуде стал холодным. Находящийся в сосуде сжатый воздух, выталкивая пробку совершает работу.

Вопрос : Что произошло с внутренней энергий?

Ответ: внутренняя энергия уменьшилась.

Вопрос : В результате чего уменьшилась внутренняя энергия?

Ответ: в результате совершения работы воздухом по выталкиванию пробки . Воздух в сосуде охладился.

Вопрос: какой можно сделать вывод из данного опыта.

Вывод: Если работу совершает само тело, то внутренняя энергия уменьшается.

И так мы с вами выяснили, что внутреннюю энергию тела можно изменить путем совершения работы самим телом или над телом.

Внутреннюю энергию можно изменить и другим способом, без совершения работы.

Например, вода в сосуде закипает, если поставить ее на огонь. Воздух и различные предметы в комнате нагреваются от радиатора центрального отопления. Внутренняя энергия в этих случаях увеличивается, так как повышается температура тел. Но при этом работа не совершается.

Такой способ изменения внутренней энергии тела называется теплопередачей.

Процесс изменения внутренней энергии без совершения работы над телом или сами мелом называется теплопередачей .

Теплопередача в свою очередь может осуществляться тремя способами: теплопроводностью; конвекцией; излучением.

Слайд 8. Опустим в стакан с горячей водой металлическую ложку. Кинетическая энергия молекул горячей воды больше кинетической энергии молекул холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. В результате этого энергия молекул воды в среднем будет уменьшаться, а энергия частиц металла будет увеличиваться. Температура воды уменьшиться, а температура ложки – постепенно увеличиться. Постепенно их температуры выравниваются.

Слайд 9 . Из данного опыта можно сделать следующий вывод.

  • Теплопередача происходит между телами или частями тела, имеющую разную температуру.
  • Теплопередача всегда происходит в определенном направлении: от тел более высокой температурой к телам с более низкой температур.
  • Когда температуры тел выравниваются, теплопередача прекращается.

4. Повторение и обобщение

Слайд 10-15 . Проверочный тест.

  1. При повышении температуры скорость движения молекул…

В) остается не изменой.

  1. К тепловым явлениям относятся:

А) плавление металлов;

Б) движение автомобиля;

Г) наступление рассвета.

  1. Тепловым движением можно считать….

А) движение одной молекулы;

Б) беспорядочное движение всех молекул;

В) движение нагретого тела;

Г) любой вид движения.

  1. Внутренняя энергия тела зависит…

А) от температуры тела;

Б) от механического движения тела;

В) от положения тела относительно других тел;

Г) от агрегатного состояния вещества.

  1. В каком из приведенных примеров внутренняя энергия увеличивается путем совершения механической работы над телом?

А) нагревание гвоздя при забивании его в доску;

Б) нагревание металлической ложки в горячей воде;

В) выбивание пробки из бутылки газированным напитком

6. Теплопередача происходит в направлении….

А) от тел с низкой температурой к телам с более высокой температурой.

Б) от тел с более высокой температурой к телам с более низкой температурой.

В) при одинаковой температуре .

Домашнее задание. Параграф 3 выучить, ответить на вопросы в конце параграфа.

По теме: методические разработки, презентации и конспекты

Урок физики в восьмом классе по теме: «Способы изменения внутренней энергии»

Урок в восьмом классе с использованием оборудования лаборатории «L-микро»Тема:Способы изменения внутренней энергииУрок № 3.Тип урока:КомбинированныйЦель урока:Рассмотреть способы изменения внутр.

Конспект урока «Внутренняя энергия. Способы изменения внутренней энергии»

Урок с использованием ЭОР. Приводится полный конспект урока, таблица с используемыми ЭОР.

Технологическая карта урока 8 класс «Способы изменения внутренней энергии»

Урок разработан на основе системно-деятельностного подхода с применением цифровых образовательных ресурсов.

«Внутренняя энергия. Способы изменения внутренней энергии»

Урок изучения нового материала с применением ИКТ в 8 классе.

Урок физики в 8-м классе по теме: «Внутренняя энергия. Способы изменения внутренней энергии»

Комбинированный урок физики.

Урок обобщения и систематизации знаний по физике в 8 классе «Способы изменения внутренней энергии тела»

Автор учебника Пёрышкин А. В. Данный урок проводится в конце изучения раздела «Способы изменения внутренней энергии тела».

Тест по теме «Внутренняя энергия. Способы изменения внутренней энергии. Виды теплопередачи»

Тест составлен для обучающихся 8 класса; включает в себя 2 варианта; в тесте имеются задания с выбором ответа, а также задания, предполагающие развернутый ответ.

Источник

Конспект 8 класса способы изменения внутренней энергии тела

Существуют два вида механической энергии: кинетическая и потенциальная. Сумма кинетической и потенциальной энергии тела называется его полной механической энергией, которая зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует. Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии. (подробнее о Механической энергии в конспекте «Механическая энергия. Закон сохранения энергии»)

Внутренняя энергия

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U. Единицей внутренней энергии является 1 джоуль (1 Дж). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.

Внутреннюю энергию можно изменить при совершении работы. Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи, о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Конспект урока по физике в 8 классе «Внутренняя энергия».

Источник

Внутренняя энергия тела и способы её изменения

Урок 2. Физика 8 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Внутренняя энергия тела и способы её изменения»

Вы знаете, что существует два вида механической энергии — кинетическая и потенциальная. Давайте вспомним, что кинетической энергией обладает всякое движущееся тело: .

Потенциальная энергия определяется взаимным положением взаимодействующих тел или отдельных частей тела: Eп = mgh.

Изучая механические явления, вы узнали, что кинетическая и потенциальная энергии могут превращаться друг в друга таким образом, что их сумма остаётся постоянной величиной: E = Ek + Eп = const.

В этом заключается один из наиболее общих и фундаментальных законов природы — закон сохранения и превращения энергии.

Однако, вы знаете, что в реальных опытах закономерности превращения энергии выглядят гораздо сложнее.

Например, возьмём гирю из какого-либо мягкого металла, например, из свинца, и стальную плиту. Поднимем гирю вверх на какую-либо высоту, тем самым сообщив ей некоторый запас потенциальной энергии. А затем отпустим. Во время полёта гири её потенциальная энергия уменьшается, а кинетическая, наоборот, увеличивается. После падения, гиря остановится. Её потенциальная энергия относительно плиты равна нулю, как равна нулю и кинетическая энергия, поскольку гиря неподвижна. Означает ли это, что нарушился основной закон природы, и энергия бесследно исчезла?

Конечно же нет. Механическая энергия перешла в другой вид энергии. Если внимательно посмотреть на гирю после удара, то мы обнаружим, что она, как и плита, слегка сплющилась, то есть деформировалась. А если мы измерим её температуру до и после падения, то окажется, что она увеличилась.

Мы уже знаем, что при изменении температуры тела, изменяется скорость движения его молекул. Помимо этого, в результате деформации гири, изменилось и взаимное расположение молекул друг относительно друга. Значит изменилась и их потенциальная энергия.

Следовательно, механическая энергия, которой обладала гиря в начале опыта, не исчезла: она перешла в потенциальную и кинетическую энергию её молекул.

Сумма кинетической энергии теплового движения частиц, из которых состоит тело, и потенциальной энергии их взаимодействия, называется внутренней энергией тела.

Обозначают внутреннюю энергию буквой U. А измеряют её в тех же единицах, что и механическую энергию: [U] = [Дж].

Возникает логичный вопрос: а каково значение внутренней энергии какого-либо тела?

Для примера рассмотрим какой-нибудь газ, например, кислород. Потенциальная энергия взаимодействия его молекул между собой практически отсутствует. А кинетическая энергия одной молекулы кислорода очень мала. Расчёты показывают, что среднее значение кинетической энергии молекулы кислорода при комнатной температуре равно 3,7 ∙ 10 −21 Дж.

Кто-то скажет, что это очень маленькая величина, и будет прав. Но, например, в 1 м 3 газообразного кислорода содержится примерно 2,7 ∙ 10 25 . А их общая энергия равна почти 100 кДж. А это значение энергии уже весьма значительно. Такой энергией, например, будет обладать одна тонный бизон, если его поднять на высоту десяти метров.

Теперь выясним, от чего зависит внутренняя энергия тела?

Вы уже знаете, что чем больше температура тела, тем быстрее движутся молекулы. Чем больше скорость движения, тем больше их кинетическая энергия. Значит, внутренняя энергия тела зависит от его температуры.

Также вам должно быть известно, что для перевода вещества из жидкого состояния в газообразное, например, чтобы превратить воду в пар, нужно подвести энергию. Следовательно, пар будет обладать большей внутренней энергией, чем вода той же массы. Значит, внутренняя энергия тела при неизменной массе зависит от его агрегатного состояния.

Т. к. масса тела равна сумме масс составляющих его частиц, то внутренняя энергия зависит и от массы тела.

Но внутренняя энергия тела не зависит от его механического движения и от его взаимодействия с другими телами. Так, например, внутренняя энергия мяча, лежащего на полу и поднятого на некоторую высоту от пола, одинакова, так же, как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь силами сопротивления его движению).

Возникает вопрос, а может ли у тела отсутствовать внутренняя энергия?

Чтобы правильно на него ответить, достаточно вспомнить, что движение частиц, из которых состоит тело, никогда не прекращается, даже при очень низких температурах. Поэтому тело всегда обладает внутренней энергией.

Как правило, значение внутренней энергии в большинстве случаев вычислить очень трудно, поскольку каждое тело состоит из огромного числа частиц. Однако нас чаще будет интересовать не само значение внутренней энергии, а её изменение. А о нём можно судить, в частности, по значению совершённой работы.

Вот мы и подошли ко второй важной проблеме — можно ли как-то изменить внутреннюю энергию тела?

Рассуждаем последовательно. Внутренняя энергия определяется энергией движения и энергией взаимодействия частиц. Следовательно, если мы сможем изменить скорость движения частиц, либо усилить или ослабить их взаимодействие друг с другом, то мы сможем изменить и внутреннюю энергию тела.

Рассмотрим каждую из возможностей изменения внутренней энергии отдельно.

Мы уже знаем, что изменить кинетическую энергию частиц тела можно путём увеличения или уменьшения температуры тела.

Существует два способа это сделать. Рассмотрим их на конкретных примерах. И так, возьмём закрытый сосуд с воздухом, к которому присоединим манометр. И начнём натирать сосуд с помощью тряпочки или сукна.

Уровень жидкости в левом колене манометра начинает понижаться. Это обусловлено тем, что воздух в колбе начинает нагреваться, вследствие чего, увеличивается его давление. Значит увеличивается и кинетическая энергия молекул воздуха. Таким образом, совершив механическую работу (трение сукна о колбу) мы смогли увеличить кинетическую энергию молекул находящегося в колбе воздуха.

Проделаем ещё один опыт. Возьмём толстостенный стеклянный сосуд, на дне которого находится небольшое количество воды. Закроем его пробкой с пропущенной через неё трубкой. Соединим трубку с насосом и начнём накачивать в сосуд воздух. Через некоторое время пробка из сосуда вылетит и в нём образуется туман.

Туман — это превратившийся в воду водяной пар.

Подумайте, когда образуется туман? Наверняка каждый из вас замечал, что чаще всего туман образуется тогда, когда после тёплого дня, наступает прохладная ночь, т. е. при значительном понижении температуры.

Следовательно, температура воздуха в сосуде понизилась. А понизилась она из-за того, что воздух, находящийся в сосуде, совершил работу. Вследствие чего, внутренняя энергия молекул воздуха в сосуде уменьшилась.

Таким образом, мы с вами можем сделать важный вывод о том, что внутренняя энергия тела изменяется при совершении работы. При этом если тело совершает работу, то его внутренняя энергия уменьшается. А если над телом совершают работу, то его внутренняя энергия увеличивается.

Теперь подумаем, можно ли изменить внутреннюю энергию тела, без совершения механической работы?

Вернёмся к опыту с колбой и манометром. Теперь не будем натирать колбу, а нагреем в ней воздух при помощи спиртовки. И опять через небольшой промежуток времени уровень жидкости в левом колене манометра начнёт понижаться. Что свидетельствует о том, что опять происходит изменение внутренней энергии воздуха в колбе.

Теперь обратимся к ситуации, с которой вы сталкиваетесь в жизни постоянно. Возьмём стакан с горячим чаем и металлическую ложку. Вы хорошо знаете, что если ложку опустить в стакан с чаем, то она через некоторое время тоже становится горячей.

В этом случае, как и в предыдущем, работа не совершается, но внутренняя энергия ложки увеличивается, о чём и свидетельствует повышение её температуры.

Поскольку вначале температура воды выше, чем температура ложки, то и средняя скорость молекул воды больше. А это значит, что молекулы воды обладают большей кинетической энергией, чем частицы металла, из которого сделана ложка. При столкновении с частицами металла молекулы воды передают им часть своей энергии, и кинетическая энергия частиц металла увеличивается. А кинетическая энергия молекул воды при этом уменьшается.

В рассмотренных нами примерах внутренняя энергия тел изменялась путём теплопередачи.

Теплопередача — способ изменения внутренней энергии тела, при котором энергия передаётся от одной части тела к другой или от одного тела к другому без совершения работы.

Стоит обратить внимание на то, что процесс теплопередачи происходит в определённом направлении — от более нагретых тел к менее нагретым, но не наоборот. А когда температуры тел выравниваются, теплопередача прекращается.

Таким образом, возможны два способа изменения внутренней энергии —совершение механической работы и теплопередача.

Существует три вида теплопередачи — теплопроводность, конвекция и излучение. Но о них мы с вами поговорим на следующих занятиях.

Источник

Читайте также:  Способ измерения температуры твердого тела
Оцените статью
Разные способы