- Простая электрическая цепь и её основные составные части
- Общие сведения
- Элементы электрической цепи
- Графическое изображение
- Пример реальной цепи
- Схемы Соединения Электрической Цепи
- Что нужно для работы электротехнического устройства?
- Активные и пассивные элементы электрической цепи
- Параллельное соединение конденсаторов
- Схема электрической цепи – применение и классификация.
- Электрическая цепь с параллельным соединением элементов
Простая электрическая цепь и её основные составные части
Для того чтобы электроток мог протекать длительное время, необходимо выполнение нескольких условий. Одним из них является замкнутость электрической цепи. Её составные части обеспечивают создание контура, позволяющего протекать носителям зарядов. Минимальное количество необходимых для этого элементов равняется трём. Но реальная цепочка может быть сколь угодно большой, хотя некоторые части должны в ней быть обязательно.
Общие сведения
Под электрической цепью понимают объединение различных радиоэлектронных устройств, соединённых между собой проводниками. Задача такой совокупности заключается в обеспечении протекания электрического тока заданных характеристик. Параметры такой системы описывают с помощью трёх основных величин:
- тока — упорядоченного движения носителей заряда, вызванного под действием внешних сил, например, электромагнитным полем;
- напряжения — работой, выполняемой для перемещения заряженной частицы из одной точки тела в другую;
- сопротивления — величины, зависящей от импеданса каждого элемента цепи.
Существует два способа анализа электроцепи — энергетический и информационный. Под первым понимается изучение процессов, связанных с преобразованием и передачей энергии. Нахождением токов и напряжений в различных местах схемы. Второй же предполагает выяснение реакции при изменении внешнего воздействия.
Существует два состояния электрической схемы — замкнутая и разомкнутая. Если имеется разрыв в каком-то месте, через него ток течь не будет. Значит, между двумя точками разомкнутого участка не появится разность потенциалов (напряжение). Замкнутый же контур обеспечивает возможность циркулирования электрических зарядов. Связь между элементами цепи выполняется с помощью проводников. То есть тел, обладающих незначительным сопротивлением.
Для того чтобы возникло движение электронов необходим источник силы — энергии. Это генератор вырабатывающий ток или напряжение. Называют его источником. Различие между генераторами в том, что токовый умеет поддерживать постоянную силу тока на своём выходе, вне зависимости от остальной части схемы. Источник же напряжения выдаёт постоянную электродвижущую силу (ЭДС), на величину которой не влияет ток в цепи.
Вырабатываемая энергия должна куда-то направляться, то есть где-то использоваться. Устройство, забирающее себе электроэнергию, называют потребителем. В качестве его может быть любой элемент схемы, не являющийся генератором и обладающий сопротивлением.
Таким образом, простейшая электрическая цепь состоит из трёх элементов — источника энергии, проводников, потребителя. Реальная электроцепь может содержать сколь угодное количество потребителей. Одни из них могут накапливать энергию, а после отдавать, другие же только потребляют, преобразовывая её в другой вид.
Элементы электрической цепи
Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.
В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.
Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:
- качественной — зависит от физических параметров, определяет назначение и функцию элемента;
- количественной — характеризует величину прибора.
Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.
Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.
Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.
Подключение элементов в цепи может быть реализована тремя способами:
- параллельным — начало различных устройств соединены в одной точке, а концы в другой;
- последовательным — все части цепи подключаются поочерёдно друг к другу;
- смешанным — комбинация двух предыдущих видов.
Перечислить все радиоэлементы довольно сложно, так как их много. Но из основных можно выделить: резистор, индуктивность, конденсатор, транзистор, диод, интегральную микросхему, светоизлучатели и фотоприемники.
Графическое изображение
Реальную или виртуальную электрическую цепь можно изобразить на рисунке. Называется она принципиальной или электрической схемой. Различие между ними в том, что на первой чертят основные блоки и их соединение, а на второй — указывают расположение и подключение.
По сути, схема является графическим изображение электрической цепи. Для обозначения тех или иных элементов используют специальные условные символы. Их рисунок имеет свой стандарт, так что любой разбирающийся в электронике или электрике сможет понять для чего предназначена та или иная схема.
В России черчение всех типов электронных узлов выполняют согласно ГОСТ 2 .702−2011.
Например, простейшее обозначение имеют проводники — прямая линия. С их помощью показывают, как соединяются элементы. Они являются основой для любой электрической схемы. Кроме проводников и непосредственно самих элементов, в схеме всегда есть ещё два условных параметра:
- ветвь — участок по которому протекает одинаковый ток;
- узел — точка в которой присоединяются более двух ветвей.
Исходя из этой терминологии, можно сказать, что ветви, подключаемые к одной паре точек, будут параллельными, а замкнутый путь, проходящий по ним, образует контур. Простейшая электрическая цепь состоит из одноконтурной схемы, сложные же включают несколько контуров.
Часто в условно-графическом обозначении общий провод, то есть проводник, по которому ток возвращается к генератору, обозначают специальным символом. Называют его «минус». Рисуют такое соединение с помощью двух перпендикулярных линий, подключённых к выводу блока. Направление тока на схемах не указывают, но возле некоторых элементов ставят знак плюс или используют другое обозначение положительного вывода.
Отдельно следует отметить схемы замещения. Их используют для удобства, заменяя реальное устройство эквивалентными пассивными радиоэлементами. Такой подход применяют, когда нужно выполнить расчёт параметров полной электросхемы или какой-то её части. Отдельные блоки на схемах очерчивают пунктирными линиями. С их помощью объединяют части цепи по функциональному признаку. Например, разделяют силовую часть от вторичной, логическую от преобразовательной.
Пример реальной цепи
Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.
Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.
Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:
- Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
- Лампочка. Подойдёт накаливания. Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
- Ключ. Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
- Провода. В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .
Сборка конструкции выполняют следующим образом. К плюсу батарейки подсоединяют провод, подключённый другим концом к выключателю. Затем свободный конец ключа подпаивают к любому из выводов лампы. Другой электрод осветительного устройства подсоединяют к минусу источника. Схема готова. Если теперь перевести ключ в положение «вкл» появится свет.
Источник
Схемы Соединения Электрической Цепи
Параллельное соединение.
Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Ёмкостные элементы — конденсаторы обладают свойством накапливать энергию электрического поля.
Например, выключатели и вся автоматическая защитная аппаратура соединяется последовательно, обеспечивая тем самым разрыв цепи.
Электричество.Общее сопротивление цепи..Выполнялка 28
Все расчёты проводят для действующих значений, в паспортных данных различных электротехнических устройств указаны действующие значения тока, напряжениябольшинство электроизмерительных приборов показывают действующие значения. Каждый элемент характеризуется только одним параметром: резистивный — сопротивлением, индуктивный — индуктивностью, емкостный — емкостью.
На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются: — экономичность передачи электроэнергии на большие расстояния; — самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором; — возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств; — уравновешенность симметричных трехфазных систем. Ко вторичным источникам относятся, например, выпрямительные устройства, у которых электроэнергия имеется на входе и на выходе.
Резистивное сопротивление относится к идеализированным элементам цепи.
Подобным образом именуют любой замкнутый путь, который проходит по нескольким ветвям.
На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.
Метод эквивалентных преобразований. Как находить токи и напряжения в цепи
Что нужно для работы электротехнического устройства?
На представленной схеме хорошо просматривается возможность протекания тока различными путями. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной. Для приемника задается его сопротивление R.
Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, то есть фаза — это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке. Зато в последовательную цепь можно включить много лампочек, каждая из которых рассчитана на гораздо меньшее напряжение в сети.
Индуктивность является также и коэффициентом пропорциональности, измеряемом в Генри.
С их помощью можно установить взаимосвязь между теми значениями, которые имеют токи, напряжения, ЭДП по всей электрической цепи или на отдельных её участках.
Во всех её элементах течёт один и тот же ток. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, то есть будет иметь место шестипроводная линия, что неэкономично.
В ней, размещённые элементы изображаются с помощью условных обозначений. Чаще всего используют принципиальную схему электрической цепи.
Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т. При этом соединении напряжение на каждом участке равно напряжению U, которое приложено к узловым точкам цепи.
Монтажные схемы и маркировка электрических цепей
Активные и пассивные элементы электрической цепи
Эти же соображения относятся и к многофазным электродвигателям. Если ток изменяется в определённых пределах которые зависят от детали , то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи.
Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения. Особенности нанесения разметок на схемы: Для ЭДС источников они указываются произвольно. Каждый активный элемент характеризуется только одним параметром — ЭДС или током на выходных зажимах источников.
А определить мощность можно, умножив ток на напряжение. Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника.
Законы, которые понадобятся при работе с цепями постоянного тока Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа. А выключатели или приборы защиты всегда подсоединяются последовательно, т. Трехфазные системы в настоящее время получили наибольшее распространение.
По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Вторая — элементами, преобразующими электричество в другие виды энергии.
Параллельное соединение конденсаторов
Если в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных.
В ней содержатся условные обозначения элементов, а также способы из соединения. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию в качестве примера можно привести выпрямительное устройство.
Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. Рассмотрим процесс возникновения синусоидальной ЭДС. Так, когда элемент нагревается, то сопротивление начинает возрастать. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть
Схема электрической цепи – применение и классификация.
Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной.
Источник питания на рис. Действующее значение связано с амплитудным простым соотношением 2. Нюансы графической маркировки Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы.
Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.
Когда по цепи течет ток, за некоторое время по ней пройдет некоторое количество электричества и выполнится определенная работа. В этом случае они считаются первичными. Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной на рис.
Электрическая цепь с параллельным соединением элементов
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. При этом электромагнетические процессы могут быть описаны с помощью знаний об электрическом токе, а также тех, что предлагает электродвижущая сила и напряжение. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Виды элементов Условно их можно разделить на три группы: Источники питания.
Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует см. Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Напряжение же выравнивается в местах зажимов на уровень ЭДС.
При выходе из строя одной из фаз, нулевой провод может заменить ее и предотвратить аварийную ситуацию в трехфазной цепи. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением.
При изменении тока в пределах активной двухполюсник эквивалентный источник отдает энергию во внешнюю цепь участок I вольт-амперной характеристики на рис. Нелинейные элементы электрической цепи обладают сопротивлением, которое растёт при повышении напряжения, что подводится к лампе. Для разных электротехнических устройств указывают свои номинальные параметры. Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис.
Лекция по электротехнике 1.1 — Схемы электрической цепи
Источник