Компланарные векторы решение задач векторным способом

Компланарные векторы и условие компланарности

В данной статье мы рассмотрим такие темы, как:

  • определение компланарных векторов;
  • условия компланарности векторов;
  • примеры задач на компланарность векторов.

Определение компланарных векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.

Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.

Условия компланарности векторов

  • Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
  • Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
  • Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Примеры решения задач на компланарность векторов

Исследуем на компланарность векторы

a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )

Как решить?

Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:

( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0

Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.

Ответ: векторы не являются компланарными.

Докажем, что три вектора

a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.

Как решить?

Находим смешанное произведение данных векторов:

( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )

Из данного примера видно, что смешанное произведение равняется нулю.

Читайте также:  Управление людьми способы воздействия

Ответ: векторы являются компланарными.

Проверим, компланарны ли векторы

Как решить?

Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:

1 1 1 1 2 0 0 — 1 1 3 3 3

Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:

1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 — 1 1 0 0 0

К 3-ей строке прибавляем 2-ю:

1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 0 0 0 0 0

Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.

Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №18. Компланарные векторы. Векторный метод решения задач

Перечень вопросов, рассматриваемых в теме:

— какие векторы называются компланарными и их изображение на чертежах

-определение компланарных векторов.

— признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов.

— основы векторного метода решения задач.

Атанасян Л.С. и др. Геометрия. Учебник для 10-11классов — М.: Просвещение, 2017. C. 77-85.

Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса. 2016. С.88-93.

Теоретический материал для самостоятельного изучения:

Давайте вспомним основные определения по теме «Векторы». В этом поможет следующее задание: установите соответствие между понятием и его определением.

Противоположно направлены и их длины равны.

Сонаправлены и их длины равны.

Лежат на одной или параллельных прямых

Появилось новое понятие о векторах в пространстве, которого не было на плоскости — компланарность векторов. С определения компланарных векторов и начинаются главные отличия векторов в планиметрии и стереометрии.

Определение2.Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.

Читайте также:  Все способы подъема дома

Рассмотрим некоторые случаи:

1 случай. Любые два вектора всегда будут компланарными, ведь через них
можно провести прямые, а через две прямые всегда можно провести
единственную плоскость.

2 случай. Три вектора будут компланарными если среди них есть пара коллинеарных
векторов. Тогда через один из коллинеарных векторов и вектор не коллинеарный ему
можно провести плоскость. А для второго из коллинеарных векторов легко
изобразить равный в этой плоскости.

3 случай. Если хотя бы один из трёх векторов является нулевым, то эти три вектора компланарны

Из планиметрии: Любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.

Следующая теорема выражает признак компланарности трех векторов. Теорема (признак) Если вектор можно представить в виде = х + у, где х и у — некоторые числа, то векторы , и компланарны.

Для сложения трёх некомпланарных векторов можно пользоваться правилом параллелепипеда. Отложим от произвольной точки О векторы =, =, = и построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были рёбрами.
Тогда ОD — диагональ этого параллелепипеда равна сумме векторов, и . Если вектор можно представить в виде суммы: = х + у + z, то говорят, что вектор d разложен по векторам , и . Числа х, у, z называют коэффициентами разложения.

Теорема. Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.

Часть 2. Векторный метод решения задач

Векторный метод решения задач – один из наиболее общих методов решения геометрических задач. Векторное решение стереометрических задач значительно проще их решения средствами элементарной геометрии.

Рассмотрим следующую задачу: Доказать, что прямая, проведенная через середины оснований трапеции, проходит через точку пересечения продолжений боковых сторон.

Пусть ABCD — данная трапеция, M и N — середины оснований BC И AD, а O — точка пересечения прямых AB и CD.

Читайте также:  Жидкий герметик для радиатора способ применения

Докажем, что точка О лежит на прямой МN.

Условие задачи переводится на «векторный» язык. После такого перевода осуществляются алгебраические вычисления с векторами, а затем полученное снова «переводится» на «геометрический» язык.

Решением задач векторным методом занимались ученые: Уильман Гамильтон Иога́нн Берну́лли, Пьер Ферма, Рене Декарт, Леонард Эйлер.

Примеры и разбор решения заданий тренировочного модуля:

Задача. В параллелепипеде АВСDА1В1С1D1 М —точка пересечения диагоналей грани A1B1C1D1, точка K — середина ребра ВВ1. Докажите, что прямые А1В1, KМ и ВС1 параллельны некоторой плоскости.

Решение. Введем векторы: . Векторы некомпланарны.

Разложим векторы и по векторам. Получим:

+= .

Тогда векторы = + компланарны. Следовательно, они параллельны некоторой плоскости, тогда этой плоскости параллельны и прямые А1В1, KМ и ВС1.

Источник

Оцените статью
Разные способы