Способы улучшения коммутации
Для создания хороших условий коммутации необходимо прежде всего обеспечить надлежащее состояние коллектора и щеточного аппарата, чтобы устранить механические причины искрения.
Ниже рассмотрены способы обеспечения необходимых электромагнитных условий коммутации, ограничивающих добавочный ток коммутации, что по (6.6) возможно уменьшением ЭДС или увеличением сопротивления цепи коммутируемой секции. Эти способы сводятся к созданию коммутирующей ЭДС с помощью добавочных полюсов или сдвига щеток с геометрической нейтрали, уменьшению реактивной ЭДС (ЭДС самоиндукции и взаимоиндукции), увеличению сопротивления щеточных контактов.
Основным способом улучшения коммутации в современных машинах постоянного тока является создание коммутирующего магнитного поля с помощью добавочных полюсов.
Добавочные полюсы устанавливают между гла-вными полюсами (рис. 6.4) и крепят болтами к ярму индуктора. МДС добавочных полюсов должна быть направлена против МДС реакции якоря
, чтобы скомпенсировать ее и создать коммутирующее поле
для компенсации реактивной ЭДС
. При отсутствии компенсационной обмотки
>
, а при наличии ее
>
. В последнем случае требуемая величина
меньше, так как основная доля реакции якоря компенсируется компенсационной обмоткой.
Обмотки добавочных полюсов включают так, чтобы за главным полюсом данной полярности по направлению вращения якоря в режиме генератора следовал добавочный полюс противоположной полярности, а в режиме двигателя – добавочный полюс той же полярности.
Так как величины и
пропорциональны току якоря, то для их компенсации
и
также должны быть пропорциональны току якоря. Для этого обмотку добавочных полюсов соединяют последовательно с якорем, а добавочные полюсы выполняют с ненасыщенной магнитной системой. Поэтому при номинальной нагрузке в них допускается индукция не больше 0,8 – 1,0 Тл. На отдельных участках ярма индуктора магнитные поля главных и добавочных полюсов складываются, поэтому во избежание насыщения этих участков индукция главного поля в ярме должна быть не более 1,3 Тл. Сердечники добавочных полюсов изготовляют массивными из стальной поковки или из листовой стали.
При относительно малом полезном магнитном потоке, добавочных полюсов их МДС приходится брать большой, так как значительная часть
расходуется на компенсацию
. По этой причине коэффициент рассеяния добавочных полюсов велик: s = 3 – 5 при отсутствии компенсационной обмотки и s = 2 – 3 при наличии ее. Для уменьшения рассеяния обмотку добавочных полюсов размещают ближе к якорю, подразделяя при необходимости воздушный зазор на две части путем создания второго немагнитного зазора между ярмом и сердечником добавочного полюса с помощью немагнитных прокладок.
Добавочные полюсы применяют в машинах мощностью более 0,3 кВт. Обычно число добавочных полюсов равно числу главных. В машинах мощностью до 2 кВт иногда делают половинное число добавочных полюсов.
В машинах мощностью несколько десятков Ватт добавочные полюсы не ставят. Коммутирующее поле при этом можно создать путем сдвига щеток с геометрической нейтрали, благодаря чему в зоне коммутации начинает действовать поле главных полюсов. Чтобы индуктируемая этим полем ЭДС в коммутируемой секции имела правильное направление, поле главных полюсов в зоне коммутации должно быть направлено против поля реакции якоря. Для этого в генераторе щетки необходимо повернуть в сторону вращения , а в двигателе — наоборот.
Если поток главных полюсов изменяется пропорционально току якоря (машины с последовательным возбуждением), то при определенном фиксированном положении щеток можно достичь хороших условий коммутации в широком диапазоне изменения нагрузки. Если же
, то наилучшие условия коммутации достигаются только при одной, определенной нагрузке. Установку щеток производят на глаз, наблюдая за искрением.
Снижение величины реактивной ЭДС также способствует улучшению коммутации. Численное значение ЭДС
(6.I7)
Уменьшение А в (6.17) нецелесообразно с точки зрения использования материалов, а величины и
определяются номинальной мощностью машины. Следовательно, ограничение
зависит от возможностей уменьшения
и
. В машинах мощностью более 50 кВт всегда
. Уменьшить
можно за счет ослабления взаимной индукции между коммутируемыми секциями, что достигается укорочением шага на величину одного зубцового деления и применением ступенчатой обмотки, выбором отношения К/р , равным нечетному числу, уменьшением отношения глубины паза к его ширине, применением уравнителей первого рода. Перспективно применение беспазового якоря в машинах постоянного тока. В таком якоре обмотку укрепляют на его поверхности (машины с гладким якорем) или на специальном немагнитном стакане (машины с полым якорем). В последнем случае значительно повышается быстродействие машины, как за счет значительного снижения момента инерции, так и за счет снижения индуктивности обмоток. Существенно улучшаются условия коммутации. Уменьшается также и реакция якоря. Недостатком этих машин является значительное увеличение немагнитного зазора между полюсом и якорем, что ведет к утяжелению системы возбуждения.
Увеличение сопротивления «петушков» приводит к уменьшению КПД машины и не может быть рекомендовано как средство улучшения коммутации. Существенным является подбор щеток с надлежащими характеристиками. При тяжелых условиях коммутации лучше работают твердые графитные щетки с повышенным сопротивлением переходного контакта. В этом случае электрические потери в переходном контакте и механические потери больше. Щетки с круто поднимающейся вольт-амперной характеристикой благоприятны с точки зрения уменьшения плотности тока на сбегающем краю щетки и способствуют улучшению коммутации. Медно-графитные щетки, обладающие малым переходным сопротивлением, применяются только в машинах на напряжение до 25-30 В.
При резко переменной нагрузке эффективной мерой улучшения коммутации является применение компенсационной обмотки, которая предотвращает опасность возникновения кругового огня, а также улучшает условия действия добавочных полюсов.
Источник
Коммутация в машинах постоянного тока
Под коммутацией в машинах постоянного тока понимают явления, вызванные изменением направления тока в проводниках обмотки якоря при переходе их из одной параллельной ветви в другую, т. е. при пересечении линии, по которой расположены щетки (от лат. commulatio — изменение). Рассмотрим явление коммутации на примере кольцевого якоря.
На рис. 1 показана развертка части обмотки якоря, состоящей из четырех проводников, части коллектора (две коллекторные пластины) и щетки. Проводники 2 и 3 образуют коммутируемый виток, который на рис. 1, а показан в положении, которое он занимает до коммутации, на рис. 1, в — после коммутации, а на рис. 1, б — в период коммутации. Коллектор и обмотка якоря вращаются в указанном стрелкой направлении с частотой вращения п, щетка неподвижна.
В момент времени до коммутации ток якоря Iя проходит через щетку, правую коллекторную пластину и разделяется между параллельными ветвями обмотки якоря пополам. Проводники 1, 2 и 3 и проводник 4 образуют разные параллельные ветви.
После коммутации проводники 2 и 3 перешли в другую параллельную ветвь и направление тока в них изменилось на противоположное. Это изменение произошло за время, равное периоду коммутации Тk, т. е. за время, которое требуется, чтобы щетка перешла с правой пластины на соседнюю левую (в действительности щетка перекрывает сразу несколько пластин коллектора, но в принципе это не влияет на процесс коммутации).
Рис. 1. Схема процесса коммутации тока
Один из моментов периода коммутации показан на рис. 1, б. Коммутируемый виток оказывается замкнутым накоротко коллекторными пластинами и щеткой. Так как за период коммутации происходит изменение направления тока в витке 2—3, то это означает, что по витку протекает переменный ток, создающий переменный магнитный поток.
Последний индуцирует в коммутируемом витке э. д. с. самоиндукции еL, или реактивную э. д. с. Согласно принципу Ленца, э. д. с. самоиндукции стремится поддержать в проводнике ток прежнего направления. Следовательно, направление еL совпадает с направлением тока в витке до коммутации.
Под действием э. д. с. самоиндукции в короткозамкнутом витке 2—3 протекает большой дополнительный ток iд, так как сопротивление контура мало. В месте контакта щетки с левой пластиной ток iд направлен противоположно току якоря, а в месте контакта щетки с правой пластиной направление этих токов совпадает.
Чем ближе к окончанию периода коммутации, тем меньше площадь контакта щетки с правой пластиной и тем больше плотность тока. По окончании периода коммутации контакт щетки с правой пластиной разрывается и образуется электрическая дуга. Чем больше ток iд, тем мощнее электрическая дуга.
Если щетки располагаются на геометрической нейтрали, то в коммутируемом витке магнитным потоком якоря индуцируется э. д. с. вращения евр. На рис. 2 в увеличенном масштабе показаны проводники коммутируемого витка, расположенные на геометрической нейтрали, и направление э. д. с. самоиндукции еL для генератора, совпадающее с направлением тока якоря в этом проводнике до коммутации.
Направление евр определяется по правилу правой руки и всегда совпадает с направлением еL. В результате iд еще больше увеличивается. Возникающая электрическая дуга между щеткой и коллекторной пластиной может разрушить поверхность коллектора, в результате чего ухудшается контакт между щеткой и коллектором.
Рис. 2. Направление э.д.с. в коммутирующем витке
Для улучшения условий коммутации сдвигают щетки в сторону физической нейтрали. При расположении щеток на физической нейтрали коммутируемый виток не пересекает никакого внешнего магнитного потока и э. д. с. вращения не индуцируется. Если сдвинуть щетки дальше физической нейтрали, как показано на рис. 3, то в коммутируемом витке результирующий магнитный поток будет индуцировать э. д. с. ек, направление которой противоположно направлению э. д. с. самоиндукции еL.
Таким образом, будет скомпенсирована не только э. д. с. вращения, но и э. д. с. самоиндукции (частично или полностью). Как указывалось ранее, угол сдвига физической нейтрали все время меняется и поэтому щетки обычно устанавливают со сдвигом на некоторый средний угол по отношению к ней.
Уменьшение э. д. с. в коммутируемом витке приводит к уменьшению тока iд и ослаблению электрического разряда между щеткой и коллекторной пластиной.
Улучшить условия коммутации можно установкой добавочных полюсов (Nдп и Sдn на рис. 4). Добавочный полюс располагают по геометрической нейтрали. У генераторов одноименный добавочный полюс располагается за основным полюсом по ходу вращения якоря, а у двигателя — наоборот. Обмотки добавочных полюсов включают последовательно с обмоткой якоря таким образом, чтобы создаваемый ими поток Фдп был направлен навстречу потоку якоря Фя.
Рис. 3. Направление э.д.с. в коммутируемом витке при сдвиге щеток за физическую нейтраль
Рис. 4. Схема включения обмоток добавочных полюсов
Так как оба эти потока создаются одним током (током якоря), то можно подобрать число витков обмотки добавочных полюсов и воздушный зазор между ними и якорем такими, чтобы потоки были равны по значению при любом токе якоря. Поток добавочных полюсов будет всегда компенсировать поток якоря и, таким образом, э. д. с. вращения в коммутируемом витке будет отсутствовать.
Добавочные полюсы обычно делают такими, чтобы их поток индуцировал в коммутируемом витке э. д. с, равную сумме еL + евр. Тогда в момент отрыва щетки от правой коллекторной пластины (см. рис. 1, в) электрическая дуга не возникает.
Выпускаемые промышленностью машины постоянного тока мощностью 1 кВт и выше снабжены добавочными полюсами.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник