Комбинации событий классический способ подсчета вероятностей

Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 1)

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая. Теория вероятностей – это раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении. Основное понятие теории вероятностей — вероятность события (относительная частота события) — объективная мера возможности осуществления данного события.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, D. Перечислим основные виды случайных событий:

  • события называются несовместными, если никакие два из них не могут произойти в данном испытании (опыте) вместе. Например, при подбрасывании монеты появление цифры исключает одновременное появление герба;
  • два события называются совместными, если появление одного из них не исключает появление другого события в том же испытании (опыте);
  • событие называется достоверным, если оно происходит в данном испытании обязательно. Например, выигрыш по билету беспроигрышной лотереи есть событие достоверное;
  • событие называется невозможным, если оно в данном испытании не может произойти. Например, при бросании игральной кости невозможно получить 7 очков;
  • два события называются противоположными (А и А̄), если в данном испытании они несовместны и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1;
  • событие В называется независимым от события А, если появление события А не изменяет вероятности события В: РА(В)= Р(В). В противном случае событие В называется зависимым от события А;

Полной системой событий А1, А2, А3, …, Аn называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании (опыте).

Каждому событию A ставится в соответствие некоторая мера P(A), которая называется вероятностью этого события и которая удовлетворяет следующим аксиомам:

  • для любого события 0 ≤ P(A) ≤ 1;
  • вероятность невозможного события равна нулю, P(А)=0;
  • вероятность достоверного события равна единице, Р(А)=1.

Существует классический и геометрический способы подсчета вероятности события.

При классическом способе подсчета вероятность события А вычисляется по формуле: Р(А)=m/n, где:

  • все элементарные исходы равновозможны, т.е. ни один из них не является более возможным, чем другой;
  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Для подсчета n и m часто применяются понятия и формулы комбинаторики:

  • n-факториал – это произведение всех натуральных чисел от единицы до n включительно: n! = 1*2*3*…*(n-1)*n. Например: 4!=1*2*3*4=24, 1!=1, 0!=1
  • перестановка из n элементов – комбинация из n элементов, которые отличаются друг от друга только порядком элементов. Число всех возможных перестановок вычисляют по формуле: Pn= n!
  • перестановка с повторениями – пусть даны n1 элементов первого типа, n2 — второго типа, . nk — k-го типа, всего n элементов. Способы разместить их по различным местам называются перестановками с повторениями. Число всех перестановок с повторениями вычисляют по формуле: Pn(n1,n2,…,nk) = n! / n1!n2. nk!
  • размещения – комбинации из n элементов по m (m m = n!/(n-m)!, где
    n – число всех имеющихся элементов, m- число элементов в каждой комбинации.
    При n=m размещение становится перестановкой. Если не принимать во внимание порядок элементов в размещении, а учитывать только его состав, то получается сочетание.
  • сочетания – все возможные комбинации из n элементов по m (m m = n! / m!(n-m)! = Аn m / Pm

Геометрический способ подсчета вероятности применяется, когда элементарные исходы эксперимента могут быть интерпретированы как точки отрезка, фигуры или тела.

Пусть отрезок l составляет часть отрезка L. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка, то вероятность попадания точки на отрезок l определяется равенством: Р = Длина l/ Длина L.

Вероятность попадания точки в плоскую фигуру g, составляющую часть плоской фигуры G: Р = Площадь g/Площадь G.

Вероятность попадания точки в пространственную фигуру υ, которая составляет часть фигуры V: Р = Объем υ /Объем V.

Примеры решения задач по теме «Элементы комбинаторики. События и их вероятности»

Задача 1

В 11-м классе 30 человек. 18 человек изучают английский язык, 16 – немецкий, 9 – оба языка. Сколько человек изучают а) только английский язык, б) только немецкий язык, в) не изучают ни одного языка?

Решение.
а) поскольку 18 человек изучают английский, из них 9 изучают и английский и немецкий, то 18–9=9 человек изучают только английский язык;
б) поскольку 16 человек изучают немецкий, из них 9 изучают и немецкий и английский, то 16–9=7 человек изучают только немецкий язык;
в) поскольку в классе 30 человек, из них 9 изучают только английский, 7 – только немецкий, 9 – оба языка, то 30 – (9+7+9) = 5 человек не изучают ни одного языка.

Задача 2

Сколькими способами можно переставить буквы в слове «фикус»?

Решение. В данном случае необходимо найти число перестановок из 5 букв, а поскольку в слове «фикус» все буквы разные, то число перестановок определяем по формуле: P5=5!=1*2*3*4*5=120.

Задача 3

Сколькими способами можно переставить буквы в слове «ответ»?

Решение. Необходимо найти число перестановок из 5 букв, но в отличие от задачи 2, здесь имеются повторяющиеся буквы – буква «т» повторяется дважды. Поэтому число способов определим по формуле перестановок с повторениями: P5(1, 2, 1, 1) = 5! / 2! = 60.

Задача 4

В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по производной. Найдите вероятность того, что в случайно выбранном на экзамене билете учащемуся не достанется вопрос по производной.

Решение. В данном случае число благоприятных исходов равно (25-10)=15, общее число событий – 25.
Вероятность события А = <учащемуся не достанется вопрос по производной>находим как отношение: Р(А)=15/25=0,6.

Задача 5

В ящике имеется 15 деталей, среди которых 8 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

Общее число всех возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 3 детали из 15:
n = С15 3 =15! / 3!(15-3)!=15! / (3!*12!) = 13*7*5=455.
Число благоприятных исходов равно числу способов, которыми можно извлечь 3 детали из 8 окрашенных:
m = С8 3 =8! / 3!(8-3)!= 8! / (3!*5!)=7*8=56.

Вероятность события А находим как отношение: Р(А) = m/n= 56/455≈0,12

Задача 6

Среди 17 студентов группы, из которых 8 – девушки, разыгрывается 7 билетов в театр. Какова вероятность того, что среди обладателей билетов окажутся 4 девушки и 3 юношей?

Общее число возможных элементарных исходов розыгрыша равно числу способов, которыми можно выбрать 7 человек из всех студентов группы, т. е. из 17: n = С17 7 =17! / 7!(17-7)!= 17! / (7!*10!)=19448.

Число благоприятных исходов (среди 7 обладателей билетов 4 девушки и 3 юношей) найдем, учитывая, что 4-х девушек их 8 можно выбрать С8 4 способами, а 3-х юношей из 9 можно выбрать С9 3 способами. Следовательно, m = С8 4 *С9 3 = 8!9! / 4!(8-4)!3!(9-3)! = 5880.

Вероятность события А находим как отношение: Р(А) = m/n= 5880/19448≈0,3

Другие статьи по данной теме:

Список использованных источников

  1. Алимов А.Ш., Колягин Ю.М., Ткачева М.В. и др. Алгебра и начала математического анализа. 10-11 классы. Базовый и углубленный уровни / Учебник. — 3-е изд. — М.: Просвещение, 2016;
  2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике / М. — «Высшая школа», 2004;
  3. Лисьев В.П. Теория вероятностей и математическая статистика: Учебное пособие/ Московский государственный университет экономики, статистики и информатики. – М., 2006;
  4. Семёнычев В. К. Теория вероятности и математическая статистика: Лекции /Самара, 2007;
  5. Теория вероятностей: контрольные работы и метод. указания для студентов / сост. Л.В. Рудная и др. / УрГЭУ — Екатеринбург, 2008.

2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

Источник

Комбинации событий классический способ подсчета вероятностей

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

3. Генеральная совокупность без повторений и выборки без повторений.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика— это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m + k способами.

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1. Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений— это набор некоторого конечного числа различных элементов a1 , a2, a3, . an.

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k ( k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.

Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

4. Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a1, a2, a3, a4 . На место инженера- 3: b1, b2, b3. На место врача- 3: c1, c2, c3 . Проведенная проверка показала, что командир a1 психологически совместим с инженерами b1 и b3 и врачами c 1 и c3 . Командир a2 — с инженерами b1 и b2. и всеми врачами. Командир a3 — с инженерами b1 и b2 и врачами c 1 и c3 . Командир a4-со всеми инженерами и врачом c2. Кроме того, инженер b1 не совместим с врачом c3 , b2— с врачом c1 и b3— с врачом c2. Сколькими способами при этих условиях может быть составлена команда корабля?

Составим соответствующее «дерево».

Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.

Источник

Читайте также:  Способы приготовления морских медведок
Оцените статью
Разные способы